【題目】給出下列四種說(shuō)法:①函數(shù)的單調(diào)遞增區(qū)間是;②函數(shù)的值域相同;③函數(shù)均是奇函數(shù);④若函數(shù)上有零點(diǎn),則實(shí)數(shù)的取值范圍是.其中正確結(jié)論的序號(hào)是_______.

【答案】③④

【解析】

根據(jù)對(duì)數(shù)函數(shù)的定義域,可判斷①為假命題;分別求出的值域,可判斷②為假命題;由奇函數(shù)的定義即可判斷③的真假;分離參數(shù)轉(zhuǎn)化為,求出函數(shù)的值域,即可判定④的真假.

①函數(shù)有意義須,

解得,所以時(shí),函數(shù)沒(méi)意義,

所以①錯(cuò)誤;

②函數(shù)的值域?yàn)?/span>,而的值域?yàn)?/span>

所以②錯(cuò)誤;

③函數(shù)定義域均為,

,

所以為奇函數(shù),

所以為奇函數(shù),所以③正確;

④令有零點(diǎn),

,根據(jù)對(duì)勾函數(shù)性質(zhì)可得,

單調(diào)遞減,在單調(diào)遞增,以下證明:

設(shè)

,

,

單調(diào)遞減,

同理單調(diào)遞增,所以的最小值為

的最大值為,

要使有解,需,

所以④正確.

故答案為:③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】吸煙有害健康,吸煙會(huì)對(duì)身體造成傷害,哈爾濱市于2012531日規(guī)定室內(nèi)場(chǎng)所禁止吸煙.美國(guó)癌癥協(xié)會(huì)研究表明,開(kāi)始吸煙年齡X分別為16歲、18歲、20歲和22歲者,其得肺癌的相對(duì)危險(xiǎn)度Y依次為15.1012.81,9.72,3.21;每天吸煙支數(shù)U分別為1020,30者,其得肺癌的相對(duì)危險(xiǎn)度V分別為7.5,9.516.6,用表示變量XY之間的線性相關(guān)系數(shù),用r2表示變量UV之間的線性相關(guān)系數(shù),則下列說(shuō)法正確的是(  )

A.r1r2B.r1r20

C.0r1r2D.r10r2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某公司2001年至2017年新產(chǎn)品研發(fā)費(fèi)用(單位:萬(wàn)元)的折線圖.為了預(yù)測(cè)該公司2019年的新產(chǎn)品研發(fā)費(fèi)用,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)2001年至2017年的數(shù)據(jù)(時(shí)間變量的值依次為1,2,…,17)建立模型①;根據(jù)2011年至2017年的數(shù)據(jù)(時(shí)間變量的值依次為1,2,…,7)建立模型②

(1)分別利用這兩個(gè)模型,求該公司2019年的新產(chǎn)品研發(fā)費(fèi)用的預(yù)測(cè)值;

(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體ABCDEF中,已知四邊形ABCD是邊長(zhǎng)為1的正方形,且△ADE△BCF均為正三角形,EF∥ABEF2,則該多面體的體積為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市預(yù)測(cè)2000年到2004年人口總數(shù)與年份的關(guān)系如下表所示

年份200x(年)

0

1

2

3

4

人口數(shù)y(十)萬(wàn)

5

7

8

11

19

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),計(jì)算,用最小二乘法求出關(guān)于的線性回歸方程

(2) 據(jù)此估計(jì)2005年該城市人口總數(shù)。

(參考數(shù)值:0×5+1×7+2×8+3×11+4×19=132,

參考公式:用最小二乘法求線性回歸方程系數(shù)公式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減,②存在常數(shù),使其值域?yàn)?/span>,則稱(chēng)函數(shù)是函數(shù)的“漸近函數(shù)”.

(1)判斷函數(shù)是不是函數(shù)的“漸近函數(shù)”,說(shuō)明理由;

(2)求證:函數(shù)不是函數(shù)的“漸近函數(shù)”;

(3)若函數(shù),,求證:當(dāng)且僅當(dāng)時(shí),的“漸近函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知數(shù)列中,,前項(xiàng)和

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對(duì)一切正整數(shù)都成立?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),離心率為. 

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)坐標(biāo)原點(diǎn)作直線交橢圓兩點(diǎn),過(guò)點(diǎn)的平行線交橢圓、兩點(diǎn).

①是否存在常數(shù),滿足?若存在,求出這個(gè)常數(shù);若不存在,請(qǐng)說(shuō)明理由;

②若的面積為的面積為,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BCAB=AD=AC=3,PA=BC=4M為線段AD上一點(diǎn),AM=2MD,NPC的中點(diǎn).

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案