【題目】已知正三棱錐P﹣ABC中E,F(xiàn)分別是AC,PC的中點(diǎn),若EF⊥BF,AB=2,則三棱錐P﹣ABC的外接球的表面積(
A.4π
B.6π
C.8π
D.12π

【答案】B
【解析】解:∵E、F分別是AC,PC的中點(diǎn),∴EF∥PA,
∵P﹣ABC是正三棱錐,∴PA⊥BC(對(duì)棱垂直),
∴EF⊥BC,又EF⊥BF,且BF∩BC=B,
∴EF⊥平面PBC,∴PA⊥平面PBC,
∴∠APB=∠APC=∠BPC=90°,
以PA、PB、PC為從同一點(diǎn)P出發(fā)的正方體三條棱,
將此三棱錐補(bǔ)成正方體,如圖所示:
∵三棱錐和正方體有相同的外接球,
∴正方體的體對(duì)角線就是外接球的直徑,
又AB=2,∴PA= ,∴2R= ,則R= ,
∴三棱錐P﹣ABC的外接球的表面積為:4πR2=4π× =6π,
故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知函數(shù),在交點(diǎn)處的切線相互垂直.

(1)的解析式;

(2)已知,若函數(shù)有兩個(gè)零點(diǎn),的取值范圍 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信運(yùn)動(dòng)”是騰訊開(kāi)發(fā)的一個(gè)記錄跑步或行走情況(步數(shù)里程)的公眾號(hào)用戶通過(guò)該公眾號(hào)可查看自己某時(shí)間段的運(yùn)動(dòng)情況.某人根據(jù)2018年1月至2018年11月期間每月離步的里程(單位:十公里)的數(shù)據(jù)繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )

A.月跑步里程逐月增加

B.月跑步里程最大值出現(xiàn)在10月

C.月跑步里程的中位數(shù)為5月份對(duì)應(yīng)的里程數(shù)

D.1月至5月的月跑步里程相對(duì)于6月至11月波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠新研發(fā)了一種產(chǎn)品,該產(chǎn)品每件成本為5元,將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行銷(xiāo)售,得到如下數(shù)據(jù):

單價(jià)(元)

8

8.2

8.4

8.6

8.8

9

銷(xiāo)量(件)

90

84

83

80

75

68

1)求銷(xiāo)量(件)關(guān)于單價(jià)(元)的線性回歸方程

2)若單價(jià)定為10元,估計(jì)銷(xiāo)量為多少件;

3)根據(jù)銷(xiāo)量關(guān)于單價(jià)的線性回歸方程,要使利潤(rùn)最大,應(yīng)將價(jià)格定為多少?

參考公式:,.參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)某市供電公司數(shù)據(jù),20191月份市新能源汽車(chē)充電量約270萬(wàn)度,同比2018年增長(zhǎng),為了增強(qiáng)新能源汽車(chē)的推廣運(yùn)用,政府加大了充電樁等基礎(chǔ)設(shè)施的投入.現(xiàn)為了了解該城市充電樁等基礎(chǔ)設(shè)施的使用情況,隨機(jī)選取了200個(gè)駕駛新能源汽車(chē)的司機(jī)進(jìn)行問(wèn)卷調(diào)查,根據(jù)其滿意度評(píng)分值(百分制)按照,…,分成5組,制成如圖所示的頻率分布直方圖.

1)求圖中的值并估計(jì)樣本數(shù)據(jù)的中位數(shù);

2)已知滿意度評(píng)分值在內(nèi)的男女司機(jī)人數(shù)比為,從中隨機(jī)抽取2人進(jìn)行座談,求2人均為女司機(jī)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在(0,+∞)上的連續(xù)函數(shù)y=f(x)滿足:xf′(x)﹣f(x)=xex且f(1)=﹣3,f(2)=0.則函數(shù)y=f(x)(
A.有極小值,無(wú)極大值
B.有極大值,無(wú)極小值
C.既有極小值又有極大值
D.既無(wú)極小值又無(wú)極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,FBE的中點(diǎn),

求證:(1平面ABC

2平面EDB.

3)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a,b在區(qū)間 上取值,則函數(shù) 在R上有兩個(gè)相異極值點(diǎn)的概率是( )
A.
B.1-
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案