【題目】如圖給出的是某高校土木工程系大四年級(jí)55名學(xué)生期末考試專業(yè)成績(jī)的頻率分布折線圖(連接頻率分布直方圖中各小長(zhǎng)方形上端的中點(diǎn)),其中組距為10,且本次考試中最低分為50分,最高分為100分.根據(jù)圖中所提供的信息,則下列結(jié)論中正確的是( )

A. 成績(jī)是75分的人數(shù)有20人

B. 成績(jī)是100分的人數(shù)比成績(jī)是50分的人數(shù)多

C. 成績(jī)落在70-90分的人數(shù)有35人

D. 成績(jī)落在75-85分的人數(shù)有35人

【答案】C

【解析】

結(jié)合頻率分布折線圖對(duì)每一個(gè)選項(xiàng)逐一分析得解.

對(duì)于選項(xiàng)A,成績(jī)落在70-80分的人數(shù)為,不能說(shuō)成績(jī)是75分的人數(shù)有20人,所以該選項(xiàng)是錯(cuò)誤的;

對(duì)于選項(xiàng)B, 頻率分布折線圖看不出成績(jī)是100分的人數(shù)比成績(jī)是50分的人數(shù)多,只能看出成績(jī)落在50-60的人數(shù)和成績(jī)落在90-100的人數(shù)相等,所以該選項(xiàng)是錯(cuò)誤的;

對(duì)于選項(xiàng)C, 成績(jī)落在70-90分的人數(shù)有人,所以該選項(xiàng)是正確的;

對(duì)于選項(xiàng)D,由C得成績(jī)落在70-90分的人數(shù)有35人,所以成績(jī)落在75-85分的人數(shù)有35人是錯(cuò)誤的,所以該選項(xiàng)是錯(cuò)誤的.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)的飛速發(fā)展,人民生活水平得到很大提高,汽車已經(jīng)進(jìn)入千千萬(wàn)萬(wàn)的家庭.大部分的車主在購(gòu)買汽車時(shí),會(huì)在轎車或者中作出選擇,為了研究某地區(qū)哪種車型更受歡迎以及汽車一年內(nèi)的行駛里程,某汽車銷售經(jīng)理作出如下統(tǒng)計(jì):

購(gòu)買了轎車(輛)

購(gòu)買了(輛)

歲以下車主

歲以下車主

(I)根據(jù)表,是否有的把握認(rèn)為年齡與購(gòu)買的汽車車型有關(guān)?

(II)圖給出的是名車主上一年汽車的行駛里程,求這名車主上一年汽車的平均行駛里程(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(III)用表中的頻率估計(jì)概率,隨機(jī)調(diào)查歲以下車主,設(shè)其中購(gòu)買了轎車的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)頂點(diǎn)是,離心率為

)求橢圓的方程;

)已知矩形的四條邊都與橢圓相切,設(shè)直線AB方程為,求矩形面積的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,Q為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線AB與平面MNQ不垂直的是  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

在直接坐標(biāo)系中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為.

I)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;

II)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知斜三棱柱中,,在底面上的射影恰為的中點(diǎn),且.

1)求證:;

2)求直線與平面所成角的正弦值;

3)在線段上是否存在點(diǎn),使得二面角的平面角為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線.

(Ⅰ)、是拋物線上不同于頂點(diǎn)的兩點(diǎn),若以為直徑的圓經(jīng)過(guò)拋物線的頂點(diǎn),試證明直線必過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

(Ⅱ)在(Ⅰ)的條件下,拋物線在處的切線相交于點(diǎn),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)據(jù),,,的平均值為2,方差為1,則數(shù)據(jù),,,相對(duì)于原數(shù)據(jù)( )

A.一樣穩(wěn)定B.變得比較穩(wěn)定C.變得比較不穩(wěn)定D.穩(wěn)定性不可以判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象上存在點(diǎn),函數(shù)的圖象上存在點(diǎn),且,關(guān)于軸對(duì)稱,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案