【題目】各項(xiàng)均為非負(fù)整數(shù)的數(shù)列{an}同時(shí)滿足下列條件: ①a1=m(m∈N*);②an≤n﹣1(n≥2);③n是a1+a2+…+an的因數(shù)(n≥1).
(Ⅰ)當(dāng)m=5時(shí),寫出數(shù)列{an}的前五項(xiàng);
(Ⅱ)若數(shù)列{an}的前三項(xiàng)互不相等,且n≥3時(shí),an為常數(shù),求m的值;
(Ⅲ)求證:對任意正整數(shù)m,存在正整數(shù)M,使得n≥M時(shí),an為常數(shù).

【答案】解:(Ⅰ) m=5時(shí),數(shù)列{an}的前五項(xiàng)分別為:5,1,0,2,2.

(Ⅱ)∵0≤an≤n﹣1,∴0≤a2≤1,0≤a3≤2,

又?jǐn)?shù)列{an}的前3項(xiàng)互不相等,

⑴當(dāng)a2=0時(shí),

若a3=1,則a3=a4=a5=…=1,

且對n≥3, 都為整數(shù),∴m=2;

若a3=2,則a3=a4=a5=…=2,

且對n≥3, 都為整數(shù),∴m=4;

⑵當(dāng)a2=1時(shí),

若a3=0,則a3=a4=a5=…=0,

且對n≥3, 都為整數(shù),∴m=﹣1,不符合題意;

若a3=2,則a3=a4=a5=…=2,

且對n≥3, 都為整數(shù),∴m=3;

綜上,m的值為2,3,4.

(Ⅲ)證明:對于n≥1,令Sn=a1+a2+…+an,

又對每一個(gè)n, 都為正整數(shù),∴ ,其中“<”至多出現(xiàn)m﹣1個(gè).

故存在正整數(shù)M>m,當(dāng)n>M時(shí),必有 成立.

當(dāng) 時(shí),則

從而

由題設(shè)知 ,又 及an+1均為整數(shù),

=an+1= ,故 =常數(shù).

從而 =常數(shù).

故存在正整數(shù)M,使得n≥M時(shí),an為常數(shù)


【解析】(Ⅰ)當(dāng)m=5時(shí),寫出數(shù)列{an}的前五項(xiàng);(Ⅱ)對a2、a3分類取值,再結(jié)合各項(xiàng)均為非負(fù)整數(shù)列式求m的值;(Ⅲ)令Sn=a1+a2+…+an,則 .進(jìn)一步推得存在正整數(shù)M>m,當(dāng)n>M時(shí),必有 成立.再由 成立證明an為常數(shù).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)的對邊分別為為銳角,問:(1)證明: B - A = ,(2)求 sin A + sin C 的取值范圍
(1)(1)證明:
(2)(2)求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,同時(shí)滿足兩個(gè)條件“①x∈R,f( +X)+f( -X)=0;②當(dāng)﹣ <x< 時(shí),f′(x)>0”的一個(gè)函數(shù)是(
A.f(x)=sin(2x+
B.f(x)=cos(2x+
C.f(x)=sin(2x﹣
D.f(x)=cos(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位附近只有甲,乙兩個(gè)臨時(shí)停車場,它們各有50個(gè)車位,為了方便市民停車,某互聯(lián)網(wǎng)停車公司對這兩個(gè)停車場在工作日某些固定時(shí)刻的剩余停車位進(jìn)行記錄,如下表:

時(shí)間

8點(diǎn)

10點(diǎn)

12點(diǎn)

14點(diǎn)

16點(diǎn)

18點(diǎn)

停車場甲

10

3

12

6

12

17

停車場乙

13

4

3

2

6

19

如果表中某一時(shí)刻停車場剩余停車位數(shù)低于總車位數(shù)的10%,那么當(dāng)車主驅(qū)車抵達(dá)單位附近時(shí),該公司將會向車主發(fā)出停車場飽和警報(bào).
(Ⅰ)假設(shè)某車主在以上六個(gè)時(shí)刻抵達(dá)單位附近的可能性相同,求他收到甲停車場飽和警報(bào)的概率;
(Ⅱ)從這六個(gè)時(shí)刻中任選一個(gè)時(shí)刻,求甲停車場比乙停車場剩余車位數(shù)少的概率;
(Ⅲ)當(dāng)停車場乙發(fā)出飽和警報(bào)時(shí),求停車場甲也發(fā)出飽和警報(bào)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖.
(Ⅰ)求a的值;
(Ⅱ)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,估計(jì)該市中學(xué)生中的全體男生的平均身高;
(Ⅲ)從該市的中學(xué)生中隨機(jī)抽取一名男生,根據(jù)直方圖中的信息,估計(jì)其身高在180cm 以上的概率.若從全市中學(xué)的男生(人數(shù)眾多)中隨機(jī)抽取3人,用X表示身高在180cm以上的男生人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上的小正方形邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體外接球的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(ax﹣1)lnx+ . (Ⅰ)若a=2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線l的方程;
(Ⅱ)設(shè)函數(shù)g(x)=f'(x)有兩個(gè)極值點(diǎn)x1 , x2 , 其中x1∈(0,e),求g(x1)﹣g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年3月27日,一則“清華大學(xué)要求從2017級學(xué)生開始,游泳達(dá)到一定標(biāo)準(zhǔn)才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.游泳作為一項(xiàng)重要的求生技能和運(yùn)動項(xiàng)目受到很多人的喜愛.其實(shí),已有不少高校將游泳列為必修內(nèi)容.某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛游泳是否有關(guān),對100名高三學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計(jì)

男生

10

女生

20

合計(jì)

已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為
(Ⅰ)請將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?
附:

p(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AD與BC是四面體ABCD中相互垂直的棱,若AD=BC=6,且∠ABD=∠ACD=60°,則四面體ABCD的體積的最大值是(
A.
B.
C.18
D.36

查看答案和解析>>

同步練習(xí)冊答案