【題目】選修4-4:坐標系與參數(shù)方程
已知曲線:(參數(shù)),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,點的極坐標為.
(1)將曲線的極坐標方程化為直角坐標方程,并求出點的直角坐標;
(2)設為曲線上的點,求中點到曲線上的點的距離的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】正方體的棱長為2,分別為的中點,則( )
A.直線與直線垂直B.直線與平面平行
C.平面截正方體所得的截面面積為D.點與點到平面的距離相等
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,和都為等腰直角三角形,,,M為AC的中點,且.
(1)求二面角P﹣AB﹣C的大;
(2)求直線PM與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,分別記錄了3月1日到3月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
他們所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)若選取的是3月1日與3月5日的兩組數(shù)據(jù),請根據(jù)3月2日至3月4日的數(shù)據(jù),求出y關于x的線性回歸方程;并預報當溫差為時的種子發(fā)芽數(shù).
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的坐標原點為極點,軸正半軸為極軸建立極坐標系.已知橢圓的參數(shù)方程為(為參數(shù)),直線的極坐標方程與橢相交于兩點.
(1)寫出直線的普通方程與參數(shù)方程:
(2)將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程,并求弦長的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x﹣x2+3lnx.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)證明:曲線y=f(x)在直線y=2x﹣2的下方(除點外).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2﹣9x+1(a∈R),當x≠1時,曲線y=f(x)在點(x0,f(x0)和點(2﹣x0,f(2﹣x0))處的切線總是平行,現(xiàn)過點(﹣2a,a﹣2)作曲線y=f(x)的切線,則可作切線的條數(shù)為( )
A..3B..2C.1D..0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知傾斜角為的直線經(jīng)過點.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為
(1)寫出曲線的普通方程;
(2)若直線與曲線有兩個不同的交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知和個實數(shù)若有窮數(shù)列由數(shù)列的項重新排列而成,且下列條件同時成立:① 個數(shù)兩兩不同;②當時,都成立,則稱為的一個“友數(shù)列”.
(1)若寫出的全部“友數(shù)列”;
(2)已知是通項公式為的數(shù)列的一個“友數(shù)列”,且求(用表示);
(3)設求所有使得通項公式為的數(shù)列不能成為任何數(shù)列的“友數(shù)列”的正實數(shù)的個數(shù)(用表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com