【題目】已知,且在區(qū)間上是增函數(shù).
(1)求實(shí)數(shù)的值組成的集合;
(2)設(shè)函數(shù)的兩個極值點(diǎn)為、,試問:是否存在實(shí)數(shù),使得不等式對任意及恒成立?若存在,求的取值范圍;若不存在,請說明理由.
【答案】(1);(2)或
【解析】
(1)由在區(qū)間,上是增函數(shù).可得,在區(qū)間,上恒成立.可得,,即可得出.
(2)函數(shù)的兩個極值點(diǎn)為、,可得,.,,設(shè)(a),,,則(a)是偶函數(shù),且在,上單調(diào)遞增.進(jìn)而得出其最大值.對任意及,恒成立,可得,解得范圍即可得出.
解:(1)在區(qū)間,上是增函數(shù).
,在區(qū)間,上恒成立.
, ,解得.
.
(2)函數(shù)的兩個極值點(diǎn)為、,
,.
,
,設(shè)(a),,,則(a)是偶函數(shù),且在,上單調(diào)遞增.
的最大值為(1).
設(shè),,,
對任意及,恒成立,則,解得或.
存在實(shí)數(shù)或,使得不等式對任意及,恒成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,)的最小正周期為π,且關(guān)于中心對稱,則下列結(jié)論正確的是( )
A.f(1)<f(0)<f(2)B.f(0)<f(2)<f(1)
C.f(2)<f(0)<f(1)D.f(2)<f(1)<f(0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面是正方形,平面,,是的中點(diǎn).
(1)求證:平面平面;
(2)求二面角的大小;
(3)試判斷所在直線與平面是否平行,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是我國古代計(jì)算圓周率的一種方法.在公元年左右,由魏晉時期的數(shù)學(xué)家劉徽發(fā)明.其原理就是利用圓內(nèi)接正多邊形的面積逐步逼近圓的面積,進(jìn)而求.當(dāng)時劉微就是利用這種方法,把的近似值計(jì)算到和之間,這是當(dāng)時世界上對圓周率的計(jì)算最精確的數(shù)據(jù).這種方法的可貴之處就是利用已知的、可求的來逼近未知的、要求的,用有限的來逼近無窮的.為此,劉微把它概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這種方法極其重要,對后世產(chǎn)生了巨大影響,在歐洲,這種方法后來就演變?yōu)楝F(xiàn)在的微積分.根據(jù)“割圓術(shù)”,若用正二十四邊形來估算圓周率,則的近似值是( )(精確到)(參考數(shù)據(jù))
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直三棱柱的底面為等腰直角三角形,其中,點(diǎn)是線段的中點(diǎn).
(Ⅰ)若點(diǎn)滿足,且,求的值;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某語文報(bào)社為研究學(xué)生課外閱讀時間與語文考試中的作文分?jǐn)?shù)的關(guān)系,隨機(jī)調(diào)查了本市某中學(xué)高三文科班名學(xué)生每周課外閱讀時間(單位:小時)與高三下學(xué)期期末考試中語文作文分?jǐn)?shù),數(shù)據(jù)如下表:
1 | 2 | 3 | 4 | 5 | 6 | |
38 | 40 | 43 | 45 | 50 | 54 |
(1)根據(jù)上述數(shù)據(jù),求出高三學(xué)生語文作文分?jǐn)?shù)與該學(xué)生每周課外閱讀時間的線性回歸方程,并預(yù)測某學(xué)生每周課外閱讀時間為小時時其語文作文成績;
(2)從這人中任選人,這人中至少有人課外閱讀時間不低于小時的概率.
參考公式:,其中,
參考數(shù)據(jù):,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(1)將表示為的函數(shù),求出該函數(shù)表達(dá)式;
(2)根據(jù)直方圖估計(jì)利潤不少于57萬元的概率;
(3)根據(jù)頻率分布直方圖,估計(jì)一個銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點(diǎn)后一位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】芻甍,中國古代算術(shù)中的一種幾何圖形,《九章算術(shù)》中記載“芻甍者,下有褒有廣,而上有褒無廣”芻,草也;甍,屋蓋也.翻譯為“底面有長有寬為矩形,頂部只有長沒有寬為一條棱,芻甍字面意思為茅草屋頂”如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形,若用茅草搭建它(無底面,不考慮厚度),則需要覆蓋的面積至少為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com