【題目】如圖,棱長為1(單位:)的正方體木塊經(jīng)過適當(dāng)切割,得到幾何體,已知幾何體由兩個底面相同的正四棱錐組成,底面平行于正方體的下底面,且各頂點(diǎn)均在正方體的面上,則幾何體體積的取值范圍是________(單位:).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式xex﹣2ax+a<0的非空解集中無整數(shù)解,則實數(shù)a的取值范圍是( )
A.[ , )
B.[ , )
C.[ ,e]
D.[ ,e]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲,乙兩個抽獎方案供員工選擇. 方案甲:員工最多有兩次抽獎機(jī)會,每次抽獎的中獎率均為 ,第一次抽獎,若未中獎,則抽獎結(jié)束,若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進(jìn)行第二次抽獎;若正面朝上,員工則須進(jìn)行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則所獲得獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為 ,每次中獎均可獲得獎金400元.
(Ⅰ)求某員工選擇方案甲進(jìn)行抽獎所獲獎金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎,哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為矩形,測棱底面,,點(diǎn)是的中點(diǎn),作交于.
(Ⅰ)求證:平面平面.
(Ⅱ)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,E,M分別是AD,PD的中點(diǎn),PE⊥BE,PA=PD=AD=2,AB=.
(1)求證:PB∥平面MAC.
(2)求證:平面MAC⊥平面PBE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向左平移個單位長度,再向上平移1個單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有性質(zhì)_____.(填入所有正確結(jié)論的序號)
①最大值為,圖象關(guān)于直線對稱;
②圖象關(guān)于y軸對稱;
③最小正周期為π;
④圖象關(guān)于點(diǎn)對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列的前項和為,公比,,.
(1)求等比數(shù)列的通項公式;
(2)設(shè),求的前項和.
【答案】(1)(2)
【解析】
(1)將已知兩式作差,利用等比數(shù)列的通項公式,可得公比,由等比數(shù)列的求和可得首項,進(jìn)而得到所求通項公式;(2)求得bn=n,,由裂項相消求和可得答案.
(1)等比數(shù)列的前項和為,公比,①,
②.
②﹣①,得,則,
又,所以,
因為,所以,
所以,
所以;
(2),
所以前項和.
【點(diǎn)睛】
裂項相消法適用于形如(其中是各項均不為零的等差數(shù)列,c為常數(shù))的數(shù)列. 裂項相消法求和,常見的有相鄰兩項的裂項求和,還有一類隔一項的裂項求和,如或.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù)的圖象上有兩點(diǎn),.函數(shù)滿足,且.
(1)求證:;
(2)求證:;
(3)能否保證和中至少有一個為正數(shù)?請證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com