【題目】在某次數(shù)學(xué)測驗中,學(xué)號為的四位同學(xué)的考試成績,且滿足.

1)求四位同學(xué)的考試成績互不相同的概率;

2)設(shè)四位同學(xué)中恰有位同學(xué)的考試成績?yōu)?/span>96分,求隨機(jī)變量的概率分布列及數(shù)學(xué)期望.

【答案】1;(2)分布列見解析,1.

【解析】

1)先求出四位同學(xué)的考試成績的所有可能數(shù),另外四位同學(xué)的考試成績互不相同的可能數(shù)為1,進(jìn)而利用古典概型的公式求概率;

2的可能取值為01,2,34,求出隨機(jī)變量的概率,進(jìn)而可計算出期望.

1)設(shè)四位同學(xué)的考試成績互不相同為事件,四位同學(xué)的考試成績的所有可能數(shù)為種,

而四位同學(xué)的考試成績互不相同的可能數(shù)為1,所以.

答:四位同學(xué)的考試成績互不相同的概率為.

2的可能取值為0,1,2,34,

,

,

,

.

所以的概率分布列為

0

1

2

3

4

.

答:隨機(jī)變量的數(shù)學(xué)期望為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性.

(2)試問是否存在,使得恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某小區(qū)抽取50戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50350度之間,頻率分布直方圖如圖1.

A類用戶

B類用戶

9

7

7

0

6

8

6

5

1

7

8

9

9

8

2

8

5

6

7

8

8

7

1

0

9

7

8

9

2

1)求頻率分布直方圖中的值并估計這50戶用戶的平均用電量;(2)若將用電量在區(qū)間內(nèi)的用戶記為類用戶,標(biāo)記為低用電家庭,用電量在區(qū)間內(nèi)的用戶記為類用戶,標(biāo)記為高用電家庭,現(xiàn)對這兩類用戶進(jìn)行問卷調(diào)查,讓其對供電服務(wù)進(jìn)行打分,打分情況見莖葉圖2;若打分超過85分視為滿意,沒超過85分視為不滿意,請?zhí)顚懴旅媪新?lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為滿意度與用電量高低有關(guān)

滿意

不滿意

合計

類用戶

類用戶

合計

附表及公式:

0.050

0.010

0.001

3.841

6.635

10.828

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè),其中,方程和方程根的個數(shù)分別為

1)求的值;

2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知是圓的直徑.若與圓外離的圓上存在點,連接與圓交于點,滿足,則半徑的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,的中點.

(1)證明:平面;

(2)若點在棱上,且二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如右圖所示.經(jīng)銷商為下一個銷售季度購進(jìn)了130t該農(nóng)產(chǎn)品.(單位:t,100≤≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

)將T表示為的函數(shù);

)根據(jù)直方圖估計利潤T不少于57000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時,求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓的左頂點斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.

1)求橢圓的離心率;

2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案