【題目】已知拋物線=的焦點(diǎn)為坐標(biāo)原點(diǎn), 是拋物線上異于的兩點(diǎn).
(1)求拋物線的方程;
(2)若直線的斜率之積為,求證:直線過軸上一定點(diǎn).
【答案】(1);(2)見解析.
【解析】試題分析:本題主要考查拋物線方程、直線與圓錐曲線的位置關(guān)系、直線的方程與斜率,考查了定點(diǎn)問題.(1)由拋物線的焦點(diǎn)坐標(biāo)可得p的值,即可得拋物線方程;(2)分直線的斜率存在與不存在兩種情況,結(jié)合直線的斜率之積為進(jìn)行討論.
試題解析:
(1)因為拋物線的焦點(diǎn)坐標(biāo)為,
所以,所以,
所以拋物線的方程為.
(2)證明:①當(dāng)直線的斜率不存在時,
設(shè).
因為直線的斜率之積為,
所以=,化簡得,
所以,此時直線的方程為.
②當(dāng)直線的斜率存在時,
設(shè)其方程為= ,
聯(lián)立方程組消去,
得,
根據(jù)根與系數(shù)的關(guān)系得,因為直線的斜率之積為,
所以=,即,即,
解得 (舍去)或,
所以==,即,
所以,即,
綜上所述,直線過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓方程;
(2)設(shè)不過原點(diǎn)的直線,與該橢圓交于兩點(diǎn),直線的斜率依次為,滿足,試問:當(dāng)變化時,是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移個單位長度,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象.求y=g(x)在區(qū)間[0,10π]上零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 1(a> )的右焦點(diǎn)為F,右頂點(diǎn)為A,已知 ,其中O為原點(diǎn),e為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)A的直線l與橢圓交于B(B不在x軸上),垂直于l的直線與l交于點(diǎn)M,與y軸交于點(diǎn)H,若BF⊥HF,且∠MOA=∠MAO,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列各曲線的標(biāo)準(zhǔn)方程.
(1)長軸長為,離心率為,焦點(diǎn)在軸上的橢圓;
(2)已知雙曲線的漸近線方程為,焦距為,求雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面與平面交于直線是平面內(nèi)不同的兩點(diǎn),是平面內(nèi)不同的兩點(diǎn),且不在直線上,分別是線段的中點(diǎn),下列命題中正確的個數(shù)為( )
①若與相交,且直線平行于時,則直線與也平行;
②若是異面直線時,則直線可能與平行;
③若是異面直線時,則不存在異于的直線同時與直線都相交;
④兩點(diǎn)可能重合,但此時直線與不可能相交
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,點(diǎn)M(m, 0)在x軸的正半軸上,過M點(diǎn)的直線與拋物線 C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1) 若m=l,且直線的斜率為1,求以AB為直徑的圓的方程;
(2) 是否存在定點(diǎn)M,使得不論直線繞點(diǎn)M如何轉(zhuǎn)動, 恒為定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:x2+y2-4x-2y-5=0與圓C2:x2+y2-6x-y-9=0.
(1)求證:兩圓相交;(2)求兩圓公共弦所在的直線方程;
(3)在平面上找一點(diǎn)P,過P點(diǎn)引兩圓的切線并使它們的長都等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABNCD,EF∥AB,AB=2,BC=EF=1,AE= ,∠BAD=60°,G為BC的中點(diǎn).
(1)求證:FG∥平面BED;
(2)求證:平面BED⊥平面AED;
(3)求直線EF與平面BED所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com