(2010•江西模擬)在正三棱錐S-ABC中,M為棱SC上異于端點的點,且SB⊥AM,若側棱SA=
3
,則正三棱錐S-ABC的外接球的表面積是
分析:根據(jù)三棱錐為正三棱錐,可證明出AC⊥SB,結合SB⊥AM,得到SB⊥平面SAC,因此可得SA、SB、SC三條側棱兩兩互相垂直.最后利用公式求出外接圓的直徑,結合球的表面積公式,可得正三棱錐S-ABC的外接球的表面積.
解答:解:取AC中點,連接BN、SN
∵N為AC中點,SA=SC
∴AC⊥SN,同理AC⊥BN,
∵SN∩BN=N
∴AC⊥平面SBN
∵SB?平面SBN
∴AC⊥SB
∵SB⊥AM且AC∩AM=A
∴SB⊥平面SAC⇒SB⊥SA且SB⊥AC
∵三棱錐S-ABC是正三棱錐
∴SA、SB、SC三條側棱兩兩互相垂直.
∵側棱SA=
3
,
∴正三棱錐S-ABC的外接球的直徑為:2R=
SA2+SB2+SC2
=3

外接球的半徑為R=
3
2

∴正三棱錐S-ABC的外接球的表面積是S=4πR2=9π
故答案為9π
點評:本題以正三棱錐中的垂直關系為例,考查了空間線面垂直的判定與性質,以及球內(nèi)接多面體等知識點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•江西模擬)設f(x)=x2-6x+5,實數(shù)x,y滿足條件
f(x)-f(y)≥0
1≤x≤5
,則
y
x
的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•江西模擬)若(x2+
1x
)n(n∈N*)
的二項展開式中第5項為常數(shù)項,則n=
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•江西模擬)已知集合A,B,則A∪B=A是A∩B=B的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•江西模擬)函數(shù)y=
x-3
x+1
( 。

查看答案和解析>>

同步練習冊答案