【題目】已知是拋物線的焦點,是拋物線上一點過三點的圓的圓心為,點到拋物線的準線的距離為.
(1)求拋物線的方程;
(2)若點的橫坐標為4,過的直線與拋物線有兩個不同的交點,直線與圓交于點,且點的橫坐標大于4,求當取得最小值時直線的方程.
【答案】(1);(2).
【解析】
(1)由拋物線方程知,知圓心Q在線段OF的中垂線上,點Q到 準線的距離為,則可求出的值,進而求得拋物線C的標準方程;
(2)由題意設出直線方程,分別在拋物線和圓Q中求出弦長和,將表示成關于k的函數(shù),且由點E的橫坐標大于4可得出k的取值范圍,利用導函數(shù)分析函數(shù)在上的單調性,求出其取得最小值時k的值,進而求出直線l的方程.
解:(1)由題意可知,
過三點的圓的圓心應在線段OF的中垂線上,
又因為點Q到準線的距離為,
解得,
故所求拋物線的方程為:;
(2)過的直線與拋物線有兩個不同的交點
直線l的斜率存在,設l為:
由得,
設,
由韋達定理得
故焦點弦
圓過點,及點,
可求得圓Q的方程為
由
得,
, ,
點的橫坐標大于4,
,解得
則
設
令,得或,
又 在單調遞減,單調遞增,
故
即當時,取得最小值,
故所求直線l的方程為:.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面,四邊形是直角梯形,,F是的中點,E是上的一點,則下列說法正確的是( )
A.若,則平面
B.若,則四棱錐的體積是三棱錐體積的6倍
C.三棱錐中有且只有三個面是直角三角形
D.平面平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有9只球,其中標有數(shù)字1,2,3,4的小球各2個,標數(shù)字5的小球有1個.從袋中任取3個小球,每個小球被取出的可能性都相等,用表示取出的3個小球上的最大數(shù)字.
(1)求取出的3個小球上的數(shù)字互不相同的概率;
(2)求隨機變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖1是由菱形,平行四邊形和矩形組成的一個平面圖形,其中,,,,將其沿,折起使得與重合,如圖2.
(1)證明:圖2中的平面平面;
(2)求圖2中點到平面的距離;
(3)求圖2中二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com