【題目】正三角形的邊長(zhǎng)為2,將它沿高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體外接球表面積為__________

【答案】

【解析】分析:由題意將幾何體補(bǔ)形為三棱柱,結(jié)合三棱柱的幾何特征整理計(jì)算即可求得最終結(jié)果.

詳解:根據(jù)題意可知三棱錐BACD的三條側(cè)棱BDAD、DCDA,

底面是等腰三角形,它的外接球就是它擴(kuò)展為三棱柱的外接球,

求出三棱柱的底面中心連線的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,

三棱柱的底面邊長(zhǎng)為1,1,

由題意可得:三棱柱上下底面中點(diǎn)連線的中點(diǎn),到三棱柱頂點(diǎn)的距離相等,說明中心就是外接球的球心,

∴三棱柱的外接球的球心為O,外接球的半徑為r,

棱柱的高為,球心到底面的距離為,

三棱柱中,底面△BDC,BD=CD=1,BC=,∴∠BDC=120°,

BDC的外接圓的半徑為:,

∴球的半徑為.

外接球的表面積為:.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且|AF|=2|BF|,則直線AB的斜率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲(水生植物名)生一日,長(zhǎng)三尺;莞(植物名,俗稱水蔥、席子草)生一日,長(zhǎng)一尺.蒲生日自半,莞生日自倍.問幾何日而長(zhǎng)等?”意思是:今有蒲生長(zhǎng)1日,長(zhǎng)為3尺;莞生長(zhǎng)1日,長(zhǎng)為1尺.蒲的生長(zhǎng)逐日減半,莞的生長(zhǎng)逐日增加1倍.若蒲、莞長(zhǎng)度相等,則所需的時(shí)間約為日.(結(jié)果保留一位小數(shù),參考數(shù)據(jù):lg2≈0.30,lg3≈0.48)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 (其中 為圓心)上的每一點(diǎn)橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼囊话,得到曲線 .
(1)求曲線 的方程;
(2)若點(diǎn) 為曲線 上一點(diǎn),過點(diǎn) 作曲線 的切線交圓 于不同的兩點(diǎn) (其中 的右側(cè)),已知點(diǎn) .求四邊形 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品,每生產(chǎn)1噸產(chǎn)品需人工費(fèi)4萬元,每天還需固定成本3萬元.經(jīng)過長(zhǎng)期調(diào)查統(tǒng)計(jì),每日的銷售額(單位:萬元)與日產(chǎn)量(單位:噸)滿足函數(shù)關(guān)系,已知每天生產(chǎn)4噸時(shí)利潤(rùn)為7萬元.

(1)求的值;

(2)當(dāng)日產(chǎn)量為多少噸時(shí),每天的利潤(rùn)最大,最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.

(1)請(qǐng)按字母F、G、H標(biāo)記在正方體相應(yīng)地頂點(diǎn)處(不需要說明理由);
(2)判斷平面BEG與平面ACH的位置關(guān)系.并說明你的結(jié)論;
(3)證明:直線DF⊥平面BEG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為 ,上頂點(diǎn)為 , 周長(zhǎng)為 ,離心率為 .
(1)求橢圓 的方程;
(2)若點(diǎn) 是橢圓 上第一象限內(nèi)的一個(gè)點(diǎn),直線 過點(diǎn) 且與直線 平行,直線 與橢圓 交于 兩點(diǎn),與 交于點(diǎn) ,是否存在常數(shù) ,使 .若存在,求出 的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,且,其前n項(xiàng)之和為Sn,則滿足不等式的最小自然數(shù)n___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,中點(diǎn).

(1)證明:平面;

(2)若平面,是邊長(zhǎng)為的正三角形,求直線與平面所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案