【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱AB與底面垂直,燈桿BC與燈柱AB所在的平面與道路走向垂直,路燈C采用錐形燈罩,射出的管線與平面ABC部分截面如圖中陰影所示,路寬AD=24米,設(shè)
(1)求燈柱AB的高h(用表示);
(2)此公司應該如何設(shè)置的值才能使制作路燈燈柱AB和燈桿BC所用材料的總長度最。孔钚≈禐槎嗌?
科目:高中數(shù)學 來源: 題型:
【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.
(1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;
(2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在斜三棱柱中,底面是邊長為2的正三角形,側(cè)棱長為,點在底面的投影是線段的中點,為側(cè)棱的中點.
(1)求證:平面;
(2)求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線是過點,傾斜角為的直線,以直角坐標系的原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(Ⅰ)求曲線的普通方程和曲線的一個參數(shù)方程;
(Ⅱ)曲線與曲線相交于, 兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某自動包裝機包袋的食鹽中,隨機抽取袋作為樣本,按各袋的質(zhì)量(單位: )分成四組, ,相應的樣本頻率分布直方圖如圖所示.
(Ⅰ)估計樣本的中位數(shù)是多少?落入的頻數(shù)是多少?
(Ⅱ)現(xiàn)從這臺自動包裝機包袋的大批量食鹽中,隨機抽取袋,記表示食鹽質(zhì)量屬于的袋數(shù),依樣本估計總體的統(tǒng)計思想,求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,向量m=,n=,且m與n的夾角為.
(1)求角C;
(2)已知c=,S△ABC=,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面四個命題:
①在定義域上單調(diào)遞增;
②若銳角,滿足,則;
③是定義在上的偶函數(shù),且在上是增函數(shù),若,則;
④函數(shù)的一個對稱中心是;
其中真命題的序號為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)滿足(),且.
(1)求的解析式;
(2)若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)若關(guān)于的方程有區(qū)間上有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為梯形,,,,平面ABCD.
求BE與平面EAC所成角的正弦值;
線段BE上是否存在點M,使平面平面DFM?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com