【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進(jìn)了該農(nóng)產(chǎn)品.以 (單位: )表示下一個銷售季度內(nèi)的市場需求量, (單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(1)將表示為的函數(shù);
(2)根據(jù)直方圖估計利潤不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的數(shù)學(xué)期望.
【答案】(1)(2)0.7.
(3)的分布列為
.
【解析】試題分析:(1)根據(jù)題意分段求函數(shù)解析式,利用利潤等于獲利與虧損之和列函數(shù)關(guān)系式(2)先根據(jù)函數(shù)解析式求出利潤不少于57000元對應(yīng)自變量范圍,再根據(jù)頻率分布直方圖確定自變量對應(yīng)區(qū)間概率(3)先根據(jù)組中值得隨機(jī)變量,再根據(jù)頻率分布直方圖確定對應(yīng)概率,最后根據(jù)數(shù)學(xué)期望公式求期望
試題解析:(1)當(dāng)時, ,
當(dāng)時, .
所以
(2)由(1)知利潤不少于57000元當(dāng)且僅當(dāng).
由直方圖知需求量的頻率為0.7,所以下一個銷售季度內(nèi)的利潤不少于57000元的概率的估計值為0.7.
(3)依題意可得的分布列為
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線x﹣9y﹣8=0與曲線C:y=x3﹣px2+3x相交于A,B,且曲線C在A,B處的切線平行,則實數(shù)p的值為( )
A.4
B.4或﹣3
C.﹣3或﹣1
D.﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】10.已知{an}是正數(shù)組成的數(shù)列,a1=1,且點( ,an+1)(n∈N*)在函數(shù)y=x2+1的圖象上.
(1)求數(shù)列{an}的通項公式.
(2)若數(shù)列{bn}滿足b1=1,bn+1=bn+ ,求證:bn·bn+2< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,且經(jīng)過三點.
(1)求橢圓的方程;
(2)在直線上任取一點,連接,分別與橢圓交于兩點,判斷直線是否過定點?若是,求出該定點.若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) ,則( )
A.最大值為1,最小值為
B.最大值為1,無最小值
C.最小值為 ,無最大值
D.既無最大值也無最小值查看解析
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題共12分)已知函數(shù)
(1)討論的單調(diào)性;
(2)是否存在常數(shù),使對任意的和任意的都成立,若存在,求出t的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,前n項和Sn= an .
(1)求a2 , a3 , 及{an}的通項公式.
(2)求{ }的前n項和Tn , 并證明:1≤Tn<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,其前項和為.
(1)若對任意的, , , 組成公差為4的等差數(shù)列,且,求;
(2)若數(shù)列是公比為()的等比數(shù)列, 為常數(shù),
求證:數(shù)列為等比數(shù)列的充要條件為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com