【題目】若函數(是自然對數的底數)有兩個不同的零點,則實數的取值范圍為________.
【答案】
【解析】
先將函數f(x)=λex﹣x+1有兩個不同的零點,轉化為λ有兩不等實根,令g(x),則直線y=λ曲線g(x)有兩不同交點,用導數方法判斷函數g(x)單調性,作出函數g(x)的大致圖象,結合圖象即可得出結果.
解:為函數f(x)=λex﹣x+1有兩個不同的零點,
所以λ有兩不等實根,令g(x),
則直線y=λ與曲線g(x)有兩不同交點,
又,
令g′(x)=0得x=2,
所以,當x>2時,g′(x)<0,g(x)單調遞減;
當x<2時,g′(x)>0,g(x)單調遞增;
所以g(x)max,
又g(1)=0,當x>1時,,
所以,作出g(x)的大致圖象如下:
由圖象可得:0<λ,
故答案為:(0,).
科目:高中數學 來源: 題型:
【題目】明初出現了一大批杰出的騎兵將領,比如徐達、常遇春、李文忠、藍玉和朱棣.明初騎兵軍團擊敗了不可一世的蒙古騎兵,是當時世界上最強騎兵軍團.假設在明軍與元軍的某次戰(zhàn)役中,明軍有8位將領,善用騎兵的將領有5人;元軍有8位將領,善用騎兵的有4人.
(1)現從明軍將領中隨機選取4名將領,求至多有3名是善用騎兵的將領的概率;
(2)在明軍和元軍的將領中各隨機選取2人,為善用騎兵的將領的人數,寫出的分布列,并求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】部分與整體以某種相似的方式呈現稱為分形,一個數學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學不僅讓人們感悟到科學與藝木的融合,數學與藝術審美的統(tǒng)一,而且還有其深刻的科學方法論意義.如圖,由波蘭數學家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形.
若在圖④中隨機選。c,則此點取自陰影部分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義在上的函數,若函數滿足:①在區(qū)間上單調遞減,②存在常數,使其值域為,則稱函數是函數的“漸近函數”.
(1)判斷函數是不是函數的“漸近函數”,說明理由;
(2)求證:函數不是函數的“漸近函數”;
(3)若函數,,求證:當且僅當時,是的“漸近函數”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P一ABCD中,已知,點Q為AC中點,底面ABCD,,點M為PC的中點.
(1)求直線PB與平面ADM所成角的正弦值;
(2)求二面角D-AM-C的正弦值;
(3)記棱PD的中點為N,若點Q在線段OP上,且平面ADM,求線段OQ的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,.
(Ⅰ)求平面與平面所成二面角(銳角)的余弦值;
(Ⅱ)點是線段上的動點,當直線與所成角最小時,求線段的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一塊三角形邊角地,如圖,,,.(單位為百米).欲利用這塊地修一個三角形形狀的草坪(圖中)供市民休閑,其中點在邊上,點在邊上,沿的三邊修建休閑長廊,規(guī)劃部門要求的面積占面積的一半,設(百米),的周長為(百米)
(1)求出函數的解析式及定義域
(2)求出休閑長廊總長度的取值范圍,并確定當取到最大值時點,的位置
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2014年7月18日15時,超強臺風“威馬遜”登陸海南。畵y(tǒng)計,本次臺風造成全省直接經濟損失119.52億元.適逢暑假,小明調查住在自己小區(qū)的50戶居民由于臺風造成的經濟損失,作出如下頻率分布直方圖:
經濟損失 4000元以下 | 經濟損失 4000元以上 | 合計 | |
捐款超過500元 | 30 | ||
捐款低于500元 | 6 | ||
合計 |
(1)臺風后區(qū)委會號召小區(qū)居民為臺風重災區(qū)捐款,小明調查的50戶居民捐款情況如上表,在表格空白處填寫正確數字,并說明是否有以上的把握認為捐款數額是否多于或少于500元和自身經濟損失是否到4000元有關?
(2)臺風造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求連續(xù)3天內,李師傅比張師傅早到小區(qū)的天數的數學期望.
附:臨界值表
參考公式: .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com