【題目】已知函數(shù),函數(shù),其中是自然對(duì)數(shù)的底數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)設(shè)函數(shù)(),討論的單調(diào)性;
(3)若對(duì)任意,恒有關(guān)于的不等式成立,求實(shí)數(shù)的取值范圍.
【答案】(1).(2)答案見(jiàn)解析.(3)
【解析】
(1)由函數(shù),求導(dǎo)得到, 再求得,,寫(xiě)出切線方程.
(2)易得,由在上恒成立,根據(jù),分,討論求解.
(3)根據(jù)對(duì)任意,恒有關(guān)于的不等式成立,轉(zhuǎn)化為,對(duì)任意恒成立,設(shè)(,用導(dǎo)數(shù)法求其最小值即可.
(1)因?yàn)?/span>
所以,
所以.
因?yàn)?/span>,
所以,
即所求曲線在點(diǎn)處的切線方程為.
(2)易知,函數(shù)的定義域?yàn)?/span>,,
且有
.
因?yàn)?/span>在上恒成立,
所以①當(dāng)時(shí),在上恒成立,此時(shí),
所以,在區(qū)間上單調(diào)遞增.
②當(dāng)時(shí),由,即,解得;
由,即,解得.
所以,在區(qū)間上單調(diào)遞減;
在區(qū)間上單調(diào)遞增.
(3)因?yàn)閷?duì)任意,恒有關(guān)于的不等式成立,
所以 ,對(duì)任意恒成立,
設(shè)().
易得,.
令,,
所以.
顯然,當(dāng)時(shí),恒成立.
所以函數(shù)在上單調(diào)遞減,所以,
即在恒成立.
所以,函數(shù)在單調(diào)遞減.
所以有,
所以.
故所求實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=ex﹣cosx,則不等式f(2x﹣1)+f(x﹣2)>0的解集為( )
A.(﹣∞,1)B.(﹣∞,)C.(,+∞)D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)有四大國(guó)粹:京劇、武術(shù)、中醫(yī)和書(shū)法.某大學(xué)開(kāi)設(shè)這四門(mén)課供學(xué)生選修,男生甲選其中三門(mén)課進(jìn)行學(xué)習(xí),已知他選修了京劇,則他選修書(shū)法的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)有教師400人,其中高中教師240人.為了了解該校教師每天課外鍛煉時(shí)間,現(xiàn)利用分層抽樣的方法從該校教師中隨機(jī)抽取了100名教師進(jìn)行調(diào)查,統(tǒng)計(jì)其每天課外鍛煉時(shí)間(所有教師每天課外鍛煉時(shí)間均在分鐘內(nèi)),將統(tǒng)計(jì)數(shù)據(jù)按,,,…,分成6組,制成頻率分布直方圖如下:假設(shè)每位教師每天課外鍛煉時(shí)間相互獨(dú)立,并稱每天鍛煉時(shí)間小于20分鐘為缺乏鍛煉.
(1)試估計(jì)本校教師中缺乏鍛煉的人數(shù);
(2)從全市高中教師中隨機(jī)抽取3人,若表示每天課外鍛煉時(shí)間少于10分鐘的人數(shù),以這60名高中教師每天課外鍛煉時(shí)間的頻率代替每名高中教師每天課外鍛煉時(shí)間發(fā)生的概率,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),若在,處的導(dǎo)數(shù)相等,證明:;
(2)若有兩個(gè)不同的零點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】角谷猜想,也叫猜想,是由日本數(shù)學(xué)家角谷靜夫發(fā)現(xiàn)的,是指對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1;如果它是偶數(shù),則對(duì)它除以2,如此循環(huán)最終都能夠得到1.如:取,根據(jù)上述過(guò)程,得出6,3,10,5,16,8,4,2,1,共9個(gè)數(shù).若,根據(jù)上述過(guò)程得出的整數(shù)中,隨機(jī)選取兩個(gè)不同的數(shù),則這兩個(gè)數(shù)都是偶數(shù)的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新高考取消文理科,實(shí)行“3+3”,成績(jī)由語(yǔ)文、數(shù)學(xué)、外語(yǔ)統(tǒng)一高考成績(jī)和自主選考的3門(mén)普通高中學(xué)業(yè)水平考試等級(jí)性考試科目成績(jī)構(gòu)成.為了解各年齡層對(duì)新高考的了解情況,隨機(jī)調(diào)查50人(把年齡在[15,45)稱為中青年,年齡在[45,75)稱為中老年),并把調(diào)查結(jié)果制成如表:
(1)請(qǐng)根據(jù)上表完成下面2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為對(duì)新高考的了解與年齡(中青年、中老年)有關(guān)?
附:K2.
(2)現(xiàn)采用分層抽樣的方法從中老年人中抽取8人,再?gòu)倪@8人中隨機(jī)抽取2人進(jìn)行深入調(diào)查,求事件A:“恰有一人年齡在[45,55)”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足:存在,對(duì)任意的,都有(為常數(shù)),則稱具有性質(zhì)
(1)若無(wú)窮數(shù)列具有性質(zhì),且,求的值
(2)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,,判斷是否具有性質(zhì),并說(shuō)明理由.
(3)設(shè)無(wú)窮數(shù)列既具有性質(zhì),又具有性質(zhì),其中互質(zhì),求證:數(shù)列具有性質(zhì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(0,2),B(0,﹣2),動(dòng)點(diǎn)P(x,y)滿足PA,PB的斜率之積為.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)已知直線l:y=kx+m,C的右焦點(diǎn)為F,直線l與C交于M,N兩點(diǎn),若F是△AMN的垂心,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com