(2013•濟寧二模)已知圓(x-a)2+(y-b)2=r2的圓心為拋物線y2=4x的焦點,且與直線3x+4y+2=0相切,則該圓的方程為( 。
分析:拋物線y2=4x的焦點坐標(biāo)為(1,0),即為圓心坐標(biāo),利用圓與直線3x+4y+2=0相切,可求半徑,即可得到圓的方程.
解答:解:由題意,拋物線y2=4x的焦點坐標(biāo)為(1,0),即為圓心坐標(biāo)
∵圓與直線3x+4y+2=0相切,∴r=
|3+2|
5
=1

∴圓的方程為(x-1)2+y2=1
故選C.
點評:本題考查圓與拋物線的綜合,考查直線與圓相切,解題的關(guān)鍵是確定圓的圓心與半徑.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧二模)將函數(shù)y=2cos2x的圖象向右平移
π
2
個單位長度,再將所得圖象的所有點的橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),得到的函數(shù)解析式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧二模)對于平面α和共面的直線m,n,下列命題是真命題的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧二模)定義在(0,
π
2
)上的函數(shù)f(x),其導(dǎo)函數(shù)是f′(x),且恒有f(x)<f′(x)•tanx成立,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧二模)設(shè)二次函數(shù)f(x)=ax2-4x+c(x∈R)的值域為[0,+∞),則
1
c
+
9
a
的最小值為( 。

查看答案和解析>>

同步練習(xí)冊答案