【題目】已知在體積為12π的圓柱中,AB,CD分別是上、下底面兩條不平行的直徑,則三棱錐A﹣BCD的體積最大值等于

【答案】8
【解析】解:設(shè)上、下底面圓的圓心分別為O1 , O,圓的半徑為r, 由已知 OO1=12π,
∴r2OO1=12,
∴VABCD=VCBCD+VDOAB
∵O是CD的中點(diǎn),∴C到平面圖OAB的距離與D到平面OAB的距離相等,
∴VCOAB=VDOAB , ∴VABCD=2VCOAB ,
設(shè)三棱錐C﹣OAB的高為h,則h≤r,
∴VABCD=2VDOAB ,
設(shè)三棱錐C﹣OAB的高為h,則h≤r,

= = = ,
∴三棱錐A﹣BCD的體積最大值為8.
所以答案是:8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于向量a,b,e及實(shí)數(shù)x,y,x1,x2,,給出下列四個(gè)條件:
; ②
唯一; ④
其中能使a與b共線的是 ( )
A.①②
B.②④
C.①③
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知yf(x)是定義在R上的偶函數(shù),當(dāng)x0時(shí),f(x)=.

(1)求當(dāng)x<0時(shí),f(x)的解析式;

(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為 ,在同一平面直角坐標(biāo)系中,將曲線C上的點(diǎn)按坐標(biāo)變換 得到曲線C',以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系. (Ⅰ)求曲線C'的極坐標(biāo)方程;
(Ⅱ)若過點(diǎn) (極坐標(biāo))且傾斜角為 的直線l與曲線C'交于M,N兩點(diǎn),弦MN的中點(diǎn)為P,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行一次如圖所示的程序框圖,若輸出i的值為0,則下列關(guān)于框圖中函數(shù)f(x)(x∈R)的表述,正確的是(
A.f(x)是奇函數(shù),且為減函數(shù)
B.f(x)是偶函數(shù),且為增函數(shù)
C.f(x)不是奇函數(shù),也不為減函數(shù)
D.f(x)不是偶函數(shù),也不為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大指出中國的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.2019年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場(chǎng)分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場(chǎng)調(diào)研知,每輛車售價(jià)5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

(1)求出2019年的利潤(rùn)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)

(2)2019年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)求實(shí)數(shù)的值;

(2)若存在,使得不等式成立,求實(shí)數(shù)的取值范圍;

(3)若函數(shù)上不存在最值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱錐的地面是矩形, 平面,,.

(1)求證: 平面;

(2)求二面角的大小;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)當(dāng)m=1時(shí),求證:對(duì)x∈[0,+∞)時(shí),f(x)≥0;
(2)當(dāng)m≤1時(shí),討論函數(shù)f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案