【題目】已知 ,在 的展開(kāi)式中,第二項(xiàng)系數(shù)是第三項(xiàng)系數(shù)的 .
(Ⅰ)展開(kāi)式中二項(xiàng)系數(shù)最大項(xiàng);
(Ⅱ)若 ,求① 的值;② 的值.
【答案】解:(Ⅰ)由題得 ,解得
∴展開(kāi)式中二項(xiàng)式系數(shù)最大項(xiàng)為
(Ⅱ) ,
令 ,得
又令 ,得
①
②將 ,
兩邊求導(dǎo),得
令 ,得
【解析】(1)先通過(guò)第二項(xiàng)系數(shù)是第三項(xiàng)系數(shù)的關(guān)系,得到關(guān)于n的方程,求出n。展開(kāi)式中二項(xiàng)系數(shù)最大項(xiàng)與n的奇偶有關(guān),當(dāng)n=6時(shí),展開(kāi)式有7項(xiàng),則最中間一項(xiàng)即第4項(xiàng)的二項(xiàng)式系數(shù)最大。
(2)將x+2拆公成(x+1)+1再展開(kāi)成關(guān)于x+1的形式,第1小問(wèn)中是除了常數(shù)項(xiàng)的所有項(xiàng)系數(shù)和,注意當(dāng)x+1為0,1,-1的時(shí)候,式子的值表示的是哪些系數(shù)的和。第2小問(wèn)中,系數(shù)前有倍數(shù),考慮其導(dǎo)函數(shù)當(dāng)x+1=1時(shí)的函數(shù)值即可。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)的相關(guān)知識(shí),掌握復(fù)合函數(shù)求導(dǎo):和,稱則可以表示成為的函數(shù),即為一個(gè)復(fù)合函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,且經(jīng)過(guò)點(diǎn)M(﹣3,﹣1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:x﹣y﹣2=0與橢圓C交于A,B兩點(diǎn),點(diǎn)P為橢圓C上一動(dòng)點(diǎn),當(dāng)△PAB的面積最大時(shí),求點(diǎn)P的坐標(biāo)及△PAB的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列 滿足 , 是數(shù)列 的前 項(xiàng)和.
(1)求數(shù)列 的通項(xiàng)公式 ;
(2)令 ,求數(shù)列 的前 項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列程序運(yùn)行的結(jié)果是__________.
n=15
S=0
i=1
WHILE i<=n
S=S+i
i=i+2
WEND
PRINT S
END
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 ( 為參數(shù)),直線 的方程為 ,以 為極點(diǎn),以 軸正半軸為極軸,建立極坐標(biāo)系,
(1)求曲線 和直線 的極坐標(biāo)方程;
(2)若直線 與曲線 交于 兩點(diǎn),求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓過(guò), ,且圓心在直線上.
(Ⅰ)求此圓的方程.
(Ⅱ)求與直線垂直且與圓相切的直線方程.
(Ⅲ)若點(diǎn)為圓上任意點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=,AB=,AC=2,A1C1=1,.
(1)證明:BCA1D;
(2)求二面角A-CC1-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣污染,又稱為大氣污染,是指由于人類活動(dòng)或自然過(guò)程引起某些物質(zhì)進(jìn)入大氣中,呈現(xiàn)出足夠的濃度,達(dá)到足夠的時(shí)間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.全世界也越來(lái)越關(guān)注環(huán)境保護(hù)問(wèn)題.當(dāng)空氣污染指數(shù)(單位:μg/m3)為0~50時(shí),空氣質(zhì)量級(jí)別為一級(jí),空氣質(zhì)量狀況屬于優(yōu);當(dāng)空氣污染指數(shù)為50~100時(shí),空氣質(zhì)量級(jí)別為二級(jí),空氣質(zhì)量狀況屬于良;當(dāng)空氣污染指數(shù)為100~150時(shí),空氣質(zhì)量級(jí)別為三級(jí),空氣質(zhì)量狀況屬于輕度污染;當(dāng)空氣污染指數(shù)為150~200時(shí),空氣質(zhì)量級(jí)別為四級(jí),空氣質(zhì)量狀況屬于中度污染;當(dāng)空氣污染指數(shù)為200~300時(shí),空氣質(zhì)量級(jí)別為五級(jí),空氣質(zhì)量狀況屬于重度污染;當(dāng)空氣污染指數(shù)為300以上時(shí),空氣質(zhì)量級(jí)別為六級(jí),空氣質(zhì)量狀況屬于嚴(yán)重污染.2017年8月18日某省x個(gè)監(jiān)測(cè)點(diǎn)數(shù)據(jù)統(tǒng)計(jì)如下:
空氣污染指數(shù)(單位:μg/m3) | [0,50] | (50,100] | (100,150] | (150,200] |
監(jiān)測(cè)點(diǎn)個(gè)數(shù) | 15 | 40 | y | 10 |
(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;
(2)在空氣污染指數(shù)分別為50~100和150~200的監(jiān)測(cè)點(diǎn)中,用分層抽樣的方法抽取5個(gè)監(jiān)測(cè)點(diǎn),從中任意選取2個(gè)監(jiān)測(cè)點(diǎn),事件A“兩個(gè)都為良”發(fā)生的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com