【題目】如圖,已知四棱錐,底面為菱形, 平面,,E,F分別是,的中點(diǎn).
(1)求證:;
(2)若直線與平面所成角的余弦值為,求二面角的余弦值.
【答案】(1)證明見解析 (2)
【解析】
(1)在底面菱形中可得,.由平面,得.從而有線面垂直,因此線線垂直;
(2)由于圖中有,,兩兩垂直,因此以A為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,設(shè),,寫出各點(diǎn)坐標(biāo),求出平面的法向量,用空間向量法表示線面角求出a,再求解二面角.
(1)證明:由四邊形為菱形,,可得為正三角形.
因?yàn)?/span>E為的中點(diǎn),所以.又,因此.
因?yàn)?/span>平面,平面,所以.
而平面,平面,且,
所以平面,又平面.所以.
(2)由(1)知,,兩兩垂直,以A為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,如圖,設(shè),,則,,
所以,且為平面的法向量,設(shè)直線與平面所成的角為,由,則有
解得
所以,
設(shè)平面的一法向量為,則,
因此取,
則
因?yàn)?/span>,所以平面,故為平面的一法向量
又
所以.
因?yàn)槎娼?/span>為銳角,所以所求二面角的余弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),如果存在實(shí)數(shù)(,且不同時(shí)成立),使得對(duì)恒成立,則稱函數(shù)為“映像函數(shù)”.
(1)判斷函數(shù)是否是“映像函數(shù)”,如果是,請求出相應(yīng)的的值,若不是,請說明理由;
(2)已知函數(shù)是定義在上的“映像函數(shù)”,且當(dāng)時(shí),.求函數(shù)()的反函數(shù);
(3)在(2)的條件下,試構(gòu)造一個(gè)數(shù)列,使得當(dāng)時(shí),,并求時(shí),函數(shù)的解析式,及的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于在某個(gè)區(qū)間上有意義的函數(shù),如果存在一次函數(shù)使得對(duì)于任意的,有恒成立,則稱函數(shù)是函數(shù)的一個(gè)弱漸近函數(shù).
(1)若函數(shù)是函數(shù)在區(qū)間上的一個(gè)弱漸近函數(shù),求實(shí)數(shù)的取值范圍;
(2)證明:函數(shù)是函數(shù)在區(qū)間上的弱漸近函數(shù);
(3)試問:函數(shù)與函數(shù)(其中為自然對(duì)數(shù)的底數(shù))在區(qū)間上是否存在相同的弱漸近函數(shù)?如果存在,請求出對(duì)應(yīng)的弱漸近函數(shù)應(yīng)滿足的條件;如不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左頂點(diǎn)為,右焦點(diǎn)為,斜率為1的直線與橢圓交于,兩點(diǎn),且,其中為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點(diǎn)且與直線平行的直線與橢圓交于,兩點(diǎn),若點(diǎn)滿足,且與橢圓的另一個(gè)交點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的左、右頂點(diǎn)分別為A、B,雙曲線以A、B為頂點(diǎn),焦距為,點(diǎn)P是上在第一象限內(nèi)的動(dòng)點(diǎn),直線AP與橢圓相交于另一點(diǎn)Q,線段AQ的中點(diǎn)為M,記直線AP的斜率為為坐標(biāo)原點(diǎn).
(1)求雙曲線的方程;
(2)求點(diǎn)M的縱坐標(biāo)的取值范圍;
(3)是否存在定直線使得直線BP與直線OM關(guān)于直線對(duì)稱?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足,對(duì)于任意都有,且,另
(1)求函數(shù)的表達(dá)式;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),判斷函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù),并給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若存在實(shí)數(shù),使得對(duì)于定義域內(nèi)的任意實(shí)數(shù),均有成立,則稱函數(shù)為“可平衡”函數(shù),有序數(shù)對(duì)稱為函數(shù)的“平衡”數(shù)對(duì).
(1)若,判斷是否為“可平衡”函數(shù),并說明理由;
(2)若,,當(dāng)變化時(shí),求證:與的“平衡”數(shù)對(duì)相同;
(3)若,且、均為函數(shù)的“平衡”數(shù)對(duì).當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第十一屆全國少數(shù)民族傳統(tǒng)體育運(yùn)動(dòng)會(huì)在河南鄭州舉行,某項(xiàng)目比賽期間需要安排3名志愿者完成5項(xiàng)工作,每人至少完成一項(xiàng),每項(xiàng)工作由一人完成,則不同的安排方式共有多少種
A.60B.90C.120D.150
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,將函數(shù)的圖像向右平移個(gè)單位長度,再向下平移個(gè)單位長度,得到函數(shù)的圖像.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在銳角中,角的對(duì)邊分別為,若,,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com