已知函數(shù)f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線的斜率為0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求證:an≥n+2;
②若a1=4,試比較
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并說明你的理由.
(1)∵f(1)=a-b=0,∴a=b,∴f(x)=ax-
a
x
-2lnx
,
∴f′(x)=a+
a
x2
-
2
x

要使函數(shù)f(x)在定義域(0,+∞)內(nèi)為單調(diào)函數(shù),則在(0,+∞)內(nèi)f′(x)恒大于0或恒小于0,
當(dāng)a=0時(shí),f′(x)=-
2
x
<0在(0,+∞)內(nèi)恒成立;
當(dāng)a>0時(shí),要使f′(x)=a(
1
x
-
1
a
2+a-
1
a
>0恒成立,則a-
1
a
>0,解得a>1,
當(dāng)a<0時(shí),要使f′(x)=a(
1
x
-
1
a
2+a-
1
a
><0恒成立,則a-
1
a
<0,解得a<-1,
所以a的取值范圍為a>1或a<-1或a=0.
(2)①∵函數(shù)f(x)的圖象在x=1處的切線的斜率為0,
∴f′(1)=0,即a+a-2=0,解得 a=1
∴f′(x)=(
1
x
-1)2,an+1=an2-nan+1
下面用數(shù)學(xué)歸納法證明:
(Ⅰ)當(dāng)n=1,a1≥3=1+2,不等式成立;
(Ⅱ)假設(shè)當(dāng)n=k時(shí),不等式成立,即:ak≥k+2,∴ak-k≥2>0,
∴ak+1=ak(ak-k )+1≥2(k+2)+1=( k+3)+k+2>k+3
也就是說,當(dāng)n=k+1時(shí),ak+1≥(k+1)+2成立
根據(jù)(Ⅰ)(Ⅱ)對于所有n≥1,都有an≥n+2成立
②由①得an=an-1(an-1-2n+2)+1≥an-1[2(n-1)+2-2n+2]+1=2an-1+1,
于是an+1≥2(an-1+1)(n≥2),
所以a2+1≥2(a1+1),a3+1≥2(a2+1)…,an+1≥2(an-1+1)
累乘得:an+1≥2n-1(a1+1),則
1
1+an
1
2n-1
1
1+a1
(n≥2),
所以
1
1+a1
+
1
1+a2
+…+
1
1+an
1
1+a1
(1+
1
2
+…+
1
2n-1
)=
2
5
(1-
1
2n
)<
2
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點(diǎn)Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案