【題目】已知點,橢圓的離心率為是橢圓的焦點,直線的斜率為為坐標原點.
(1)求橢圓的方程;
(2)設(shè)過點的直線與橢圓相交于兩點,當(dāng)的面積最大時,求直線的方程.
【答案】(1);(2).
【解析】試題分析:(1)設(shè)出F,由直線AF的斜率為,求得c,結(jié)合離心率求得a,再由隱含條件求得b,則橢圓方程可求;
(2)當(dāng)l⊥x軸時,不合題意;當(dāng)直線l斜率存在時,設(shè)直線l:y=kx-2,聯(lián)立直線方程和橢圓方程,由判別式大于0求得k的范圍,再由弦長公式求得|PQ|,由點到直線的距離公式求得O到l的距離,代入三角形面積公式,化簡后換元,利用基本不等式求得最值,進一步求出k值,則直線方程可求.
試題解析:
(1)設(shè),解得,又, 橢圓.
(2)當(dāng)軸時,不合題意;當(dāng)直線斜率存在時,設(shè)直線,聯(lián)立,得,由,得,即或, ,從而 ,又點到直線 的距離的面積,設(shè),則,
,當(dāng)且僅當(dāng),即時,等號成立,且,此時.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線是函數(shù)圖象的一條對稱軸.
(1)求的值,并求的解析式;
(2)若關(guān)于的方程在區(qū)間上有且只有一個實數(shù)解,求實數(shù)的取值范圍;
(3)已知函數(shù)的圖象是由圖象上的所有點的橫坐標伸長到原來的2倍,然后再向左平移個單位得到,若, ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時,求曲線在點處的切線方程;
(2)討論函數(shù)的單調(diào)性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求函數(shù)在處的切線方程;
(2)若函數(shù)在定義域上具有單調(diào)性,求實數(shù)的取值范圍;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值3和最小值.
(1)求實數(shù)的值;
(2)設(shè),若不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為評估新教改對教學(xué)的影響,挑選了水平相當(dāng)?shù)膬蓚平行班進行對比試驗,甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時間后進行水平測試,成績結(jié)果全部落在區(qū)間內(nèi)(滿分100分),并繪制頻率分布直方圖如圖所示,兩個班人數(shù)均為60人,成績80分及以上為優(yōu)良.
(1)根據(jù)以上信息填好聯(lián)表,并判斷出有多大的把握認為學(xué)生成績優(yōu)良與班級有關(guān)?
(2)以班級分層抽樣,抽取成績優(yōu)良的5人參加座談,現(xiàn)從5人中隨機選3人來作書面發(fā)言,求發(fā)言人至少有2人來自甲班的概率.
(以下臨界值及公式僅供參考)
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某直三棱柱(側(cè)棱與底面垂直的三棱柱)被削去上底后的直觀圖與三視圖中的側(cè)視圖、俯視圖,在直觀圖中, 是的中點,側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)求出該幾何體的體積;
(2)若是的中點,求證: 平面;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程是(為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設(shè)點,若直線與曲線交于, 兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線過點,求曲線在點處的切線方程;
(2)求函數(shù)在區(qū)間上的最大值;
(3)若函數(shù)有兩個不同的零點, ,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com