【題目】已知函數(shù) .

(1)若,試判斷函數(shù)的零點(diǎn)個(gè)數(shù);

(2)若函數(shù)上為增函數(shù),求整數(shù)的最大值.

(可能要用到的數(shù)據(jù): ,

【答案】(1)函數(shù)上的零點(diǎn)有且只有一個(gè)(2)整數(shù)的最大值為6

【解析】試題分析: 求導(dǎo),由恒成立,則上為增函數(shù),由, ,可以證明上的零點(diǎn)個(gè)數(shù)

已知函數(shù)為增函數(shù),則其導(dǎo)函數(shù)在其定義區(qū)間上恒大于等于零,可以求得所滿足的不等式,要使其恒成立則必須,再利用求導(dǎo),求得函數(shù)的的最小值的取值范圍,即可求得整數(shù)的最大值

解析:(1)因?yàn)?/span>,易知上為增函數(shù),則,故函數(shù)上為增函數(shù),又, ,所以函數(shù)上的零點(diǎn)有且只有一個(gè).

(2)因?yàn)?/span>,由題意上恒成立,因?yàn)?/span>顯然成立,故只需要上恒成立.

,則,

因?yàn)?/span>

由(1)知上為增函數(shù),

故函數(shù)有唯一的零點(diǎn)記為.

,

,

則當(dāng), , 為減函數(shù),

則當(dāng), , 為增函數(shù),

故當(dāng)時(shí), 有最小值

,

有最小值

因?yàn)?/span>,則有最小值大約在6.17~6.4之間,故整數(shù)的最大值為6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).若曲線在點(diǎn)處的切線方程為

為自然對(duì)數(shù)的底數(shù)).

1)求函數(shù)的單調(diào)區(qū)間;

2若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),且處的切線斜率為.

(1)的值,并討論上的單調(diào)性;

(2)設(shè)函數(shù) ,其中,若對(duì)任意的總存在,使得成立,求的取值范圍

3)已知函數(shù),試判斷內(nèi)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=emx+x2﹣mx(m∈R).
(1)當(dāng)m=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若m<0,且曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+(e+1)y=0垂直.
(i)當(dāng)x>0時(shí),試比較f(x)與f(﹣x)的大;
(ii)若對(duì)任意x1 , x2(x1≠x2),且f(x1)=f(x2),證明:x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 的圖象向左平移 個(gè)單位,得到的函數(shù)圖象的對(duì)稱中心與f(x)圖象的對(duì)稱中心重合,則ω的最小值是(
A.1
B.2
C.4
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓C的方程為 (θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線的極坐標(biāo)方程.

(Ⅰ)當(dāng)時(shí),判斷直線的關(guān)系;

(Ⅱ)當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x4lnx﹣a(x4﹣1),a∈R.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若當(dāng)x≥1時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(3)f(x)的極小值為φ(a),當(dāng)a>0時(shí),求證: .(e=2.71828…為自然對(duì)數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x2-11x+18<0},B={x|-2≤x≤5}.

(1)求AB;B∪(UA);

(2)已知集合C={x|axa+2},若C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長(zhǎng)為a,EPC的中點(diǎn).

(Ⅰ)求證:PA∥平面BDE;

(Ⅱ)平面PAC⊥平面BDE;

(Ⅲ)若二面角E-BD-C為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案