【題目】如圖,地圖上有一豎直放置的圓形標志物,圓心為C,與地面的接觸點為G.與圓形標志物在同一平面內(nèi)的地面上點P處有一個觀測點,且PG=50m.在觀測點正前方10m處(即PD=10m)有一個高位10m(即ED=10m)的廣告牌遮住了視線,因此在觀測點所能看到的圓形標志的最大部分即為圖中從A到F的圓。
(1)若圓形標志物半徑為25m,以PG所在直線為X軸,G為坐標原點,建立直角坐標系,求圓C和直線PF的方程;
(2)若在點P處觀測該圓形標志的最大視角(即)的正切值為,求該圓形標志物的半徑.
【答案】(1),(2)
【解析】
試題(1)求圓標準方程,只需確定圓心及半徑,由題意知圓心為,半徑為,因此,求直線PF的方程實質(zhì)求過點P的圓的切線方程,利用點斜式即圓心到直線距離等于半徑求解:設(shè)直線方程:,則解得;(2)本題實質(zhì)為已知圓的切線方程,求圓的半徑,同(1)先求出直線PF的斜率:因為,所以.再利用圓心到切線距離等于半徑求半徑:直線方程:,即,所以,
試題解析:解:(1)圓.
直線方程:.
設(shè)直線方程:,
因為直線與圓相切,所以,解得.
所以直線方程:,即.
設(shè)直線方程:,圓.
因為,所以.
所以直線方程:,即.
因為直線與圓相切,所以,
化簡得,即.
故.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),函數(shù)圖象在處的切線與x軸平行.
(1)討論方程根的個數(shù);
(2)設(shè),若對于任意的,總存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年8月8日是我國第十一個全民健身日,其主題是:新時代全民健身動起來.某市為了解全民健身情況,隨機從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.
(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計值;
(2)若從樣本中年齡在[50,70)的居民中任取2人贈送健身卡,求這2人中至少有1人年齡不低于60歲的概率;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某健身機構(gòu)統(tǒng)計了去年該機構(gòu)所有消費者的消費金額(單位:元),如下圖所示:
(1)將去年的消費金額超過 3200 元的消費者稱為“健身達人”,現(xiàn)從所有“健身達人”中隨機抽取 2 人,求至少有 1 位消費者,其去年的消費金額超過 4000 元的概率;
(2)針對這些消費者,該健身機構(gòu)今年欲實施入會制,詳情如下表:
會員等級 | 消費金額 |
普通會員 | 2000 |
銀卡會員 | 2700 |
金卡會員 | 3200 |
預計去年消費金額在內(nèi)的消費者今年都將會申請辦理普通會員,消費金額在內(nèi)的消費者都將會申請辦理銀卡會員,消費金額在內(nèi)的消費者都將會申請辦理金卡會員. 消費者在申請辦理會員時,需-次性繳清相應等級的消費金額.該健身機構(gòu)在今年底將針對這些消費者舉辦消費返利活動,現(xiàn)有如下兩種預設(shè)方案:
方案 1:按分層抽樣從普通會員, 銀卡會員, 金卡會員中總共抽取 25 位“幸運之星”給予獎勵: 普通會員中的“幸運之星”每人獎勵 500 元; 銀卡會員中的“幸運之星”每人獎勵 600 元; 金卡會員中的“幸運之星”每人獎勵 800 元.
方案 2:每位會員均可參加摸獎游戲,游戲規(guī)則如下:從-個裝有 3 個白球、 2 個紅球(球只有顏色不同)的箱子中, 有放回地摸三次球,每次只能摸-個球.若摸到紅球的總數(shù)消費金額/元為 2,則可獲得 200 元獎勵金; 若摸到紅球的總數(shù)為 3,則可獲得 300 元獎勵金;其他情況不給予獎勵. 規(guī)定每位普通會員均可參加 1 次摸獎游戲;每位銀卡會員均可參加 2 次摸獎游戲;每位金卡會員均可參加 3 次摸獎游戲(每次摸獎的結(jié)果相互獨立) .
以方案 2 的獎勵金的數(shù)學期望為依據(jù),請你預測哪-種方案投資較少?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小值;
(2)若恒成立,求實數(shù)的值;
(3)設(shè)有兩個極值點,求實數(shù)的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)已知(是虛數(shù)單位)是關(guān)于的方程的根,、,求的值;
(2)已知(是虛數(shù)單位)是關(guān)于的方程的一個根,、,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
若,求的單調(diào)區(qū)間;
是否存在實數(shù)a,使的最小值為0?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com