【題目】已知的圖像過點,且在點處的切線方程為.
(1)求的解析式;
(2)求函數的單調區(qū)間.
【答案】(1);(2)與為的增區(qū)間;為函數的減區(qū)間.
【解析】
分析:(1)求出導函數,題意說明,,,由此可求得;
(2)解不等式得增區(qū)間,解不等式得減區(qū)間.
詳解:(1)∵f(x)的圖象經過P(0,2),∴d=2,
∴f(x)=x3+bx2+ax+2,f'(x)=3x2+2bx+a.
∵點M(﹣1,f(﹣1))處的切線方程為6x﹣y+7=0
∴f'(x)|x=﹣1=3x2+2bx+a|x=﹣1=3﹣2b+a=6①,
還可以得到,f(﹣1)=y=1,即點M(﹣1,1)滿足f(x)方程,得到﹣1+b﹣a+2=1②
由①、②聯(lián)立得b=a=﹣3 故所求的解析式是f(x)=x3﹣3x2﹣3x+2.
(2)f'(x)=3x2﹣6x﹣3.令3x2﹣6x﹣3=0,即x2﹣2x﹣1=0.解得x1=1- ,x2=1+.
當x<1-,或x>1+時,f'(x)>0;當1-<x<1+時,f'(x)<0.
故f(x)的單調增區(qū)間為(﹣∞,1﹣),(1+,+∞);單調減區(qū)間為(1﹣,1+)
科目:高中數學 來源: 題型:
【題目】某學校高一年級學生某次身體素質體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內,發(fā)布成績使用等級制.各等級劃分標準見下表.
規(guī)定:三級為合格等級,D為不合格等級.為了解該校高一年級學生身體素質情況,從中抽取了名學生的原始成績作為樣本進行統(tǒng)計.按照的分組作出頻率分布直方圖如圖1所示,樣本中分數在80分及以上的所有數據的莖葉圖如圖2所示.
(I)求和頻率分布直方圖中的的值,并估計該校高一年級學生成績是合格等級的概率;
(II)在選取的樣本中,從兩個等級的學生中隨機抽取2名學生進行調研,求至少有一名學生是等級的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】總決賽采用7場4勝制,2018年總決賽兩支球隊分別為勇士和騎士,假設每場比賽勇士獲勝的概率為0.7,騎士獲勝的概率為0.3,且每場比賽的結果相互獨立,則恰好5場比賽決出總冠軍的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設{an}是公比不為1的等比數列,其前n項和為Sn , 且a5 , a3 , a4成等差數列.
(1)求數列{an}的公比;
(2)證明:對任意k∈N+ , Sk+2 , Sk , Sk+1成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖
(1)證明命題“a是平面π內的一條直線,b是π外的一條直線(b不垂直于π),c是直線b在π上的投影,若a⊥b,則a⊥c”為真.
(2)寫出上述命題的逆命題,并判斷其真假(不需要證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保護環(huán)境,某單位采用新工藝,把二氧化硅轉化為一種可利用的化工產品.已知該單位每月都有處理量,且處理量最多不超過噸,月處理成本(元)與月處理量(噸)之間的函數關系可近似的表示為:,且每處理一噸二氧化硅得到可利用的化工產品價值為元.
(1)設該單位每月獲利為(元),試將表示月處理(噸)的函數;
(2)若要保證該單位每月不虧損,則每月處理量應控制在什么范圍?
(3)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,P是正四面體V-ABC的面VBC上一點,點P到平面ABC距離與到點V的距離相等,則動點P的軌跡是( )
A. 直線 B. 拋物線
C. 離心率為的橢圓 D. 離心率為3的雙曲線
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求證:BD⊥平面AED;
(2)求二面角F﹣BD﹣C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com