【題目】(本小題滿分16分)已知數(shù)列(, )滿足, 其中, .
(1)當時,求關于的表達式,并求的取值范圍;
(2)設集合.
①若, ,求證: ;
②是否存在實數(shù), ,使, , 都屬于?若存在,請求出實數(shù), ;若不存在,請說明理由.
【答案】(1), (2)①詳見解析,②不存在
【解析】試題分析:(1)數(shù)列遞推關系式是一個分段函數(shù),可通過分段點進行連接: , , ,根據(jù)對勾函數(shù)得,或,從而有(2)①當時,數(shù)列是一個等差數(shù)列,易得,從而,令,得.問題轉化為證明有滿足條件解,易求得②∴ ,問題轉化為是否存在三個不同的整數(shù)(),使得消去a,d得,由于,所以無解
試題解析:(1)當時,
, , . 2分
因為, ,或,
所以. 4分
(2)①由題意, , . 6分
令,得.
因為, ,
所以令,則. 8分
②不存在實數(shù), ,使, , 同時屬于. 9分
假設存在實數(shù), ,使, , 同時屬于.
,∴,
從而. 11分
因為, , 同時屬于,所以存在三個不同的整數(shù)(),
使得從而
則. 13分
因為與互質,且與為整數(shù),
所以,但,矛盾.
所以不存在實數(shù), ,使, , 都屬于. 16分
科目:高中數(shù)學 來源: 題型:
【題目】一個幾何體的三視圖如圖所示,其中正視圖和側視圖是腰長為2的兩個全等的等腰直角三角形,則該幾何體的外接球的表面積是( )
A.
B.4 π
C.12π
D. π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正四棱錐S﹣ABCD中,O為頂點在底面上的射影,P為側棱SD的中點,且SO=OD,則直線BC與平面PAC所成的角是( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分為14分)如圖1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4.如圖2所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結AB,設點F是AB的中點.
(1)求證:DE⊥平面BCD;
(2)在圖2中,若EF∥平面BDG,其中G為直線AC與平面BDG的交點,求三棱錐BDEG的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.已知f(x)=ax2+(b+1)x+b﹣1(a≠0).
(1)當a=1,b=﹣2時,求函數(shù)f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的范圍;
(3)在(2)的條件下,若y=f(x)圖象上A、B兩點的橫坐標是函數(shù)f(x)的不動點,且A、B兩點關于直線y=kx+ 對稱,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在坐標原點,焦點在x軸上的橢圓,離心率為 且過點( ,0),過定點C(﹣1,0)的動直線與該橢圓相交于A、B兩點.
(1)若線段AB中點的橫坐標是﹣ ,求直線AB的方程;
(2)在x軸上是否存在點M,使 為常數(shù)?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)某學校為了支持生物課程基地研究植物生長,計劃利用學?盏亟ㄔ煲婚g室內面積為900m2的矩形溫室,在溫室內劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內墻保留 3m 寬的通道,如圖.設矩形溫室的室內長為(m),三塊種植植物的矩形區(qū)域的總面積為(m2).
(1)求關于的函數(shù)關系式;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,點E,F(xiàn)分別在A1B1 , D1C1上,A1E=D1F=4,過點E,F(xiàn)的平面α與此長方體的面相交,交線圍成一個正方形.
(I)在圖中畫出這個正方形(不必說明畫法和理由);
(II)求直線AF與平面α所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com