【題目】在一般情況下,城市主干道上的車流速度 (單位:千米/小時)是車流密度 (單位:輛/千米)的函數(shù)。當主干道上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0千米/小時;當車流密度不超過20輛/千米時,車流速度為60千米/小時。研究表明:當 時,車流速度 是車流密度 的一次函數(shù)。
(1)當 時,求函數(shù) 的表達式;
(2)當車流密度為多大時,車流量(單位時間內(nèi)通過主干道上某觀測點的車輛數(shù),單位:輛/小時) 可以達到最大?并求出最大值。(精確到1輛/小時)
【答案】
(1)
由題意:當0≤x≤20時,v(x)=60;當20<x≤200時,設v(x)=ax+b
再由已知得 ,解得 .
故函數(shù)v(x)的表達式為 .
答:函數(shù)v(x)的表達式 ;
(2)
依題并由(Ⅰ)可得 ,
當0≤x<20時,f(x)為增函數(shù),故當x=20時,其最大值為60×20=1200,
當20≤x≤200時,f(x)= ,當且僅當x=200-x,即x=100時,等號成立.
綜上所述,當x=100時,f(x)在區(qū)間[0,200]上取得最大值為 ≈3333,
即當車流密度為100輛/千米時,車流量可以達到最大值,最大值約為3333輛/小時.
答:當車流密度為100輛/千米時,車流量可以達到最大值,最大值約為3333輛/小時.
【解析】(1)根據(jù)題意,函數(shù)v(x)表達式為分段函數(shù)的形式,關(guān)鍵在于求函數(shù)v(x)在20≤x≤200時的表達式,根據(jù)一次函數(shù)表達式的形 式,用待定系數(shù)法可求得;(2)先在區(qū)間(0,20]上,函數(shù)f(x)為增函數(shù),得最大值為f(20)=1200,然后在區(qū)間[20,200]上用基本不 等式求出函數(shù)f(x)的最大值,用基本不等式取等號的條件求出相應的x值,兩個區(qū)間內(nèi)較大的最大值即為函數(shù)在區(qū)間(0,200]上的最大值.
【考點精析】本題主要考查了基本不等式在最值問題中的應用的相關(guān)知識點,需要掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣ )ex , g(x)=4x2﹣4x+mln(2x)(m∈R),g(x)存在兩個極值點x1 , x2(x1<x2).
(1)求f(x1﹣x2)的最小值;
(2)若不等式g(x1)≥ax2恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2 ,sinB=2sinA.
(1)若C= ,求a,b的值;
(2)若cosC= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一塊邊長為6cm的正方形紙片,先按如圖1所示的陰影部分截去四個全等的等腰三角形,然后將剩余部分沿虛線折疊并拼成一個正四棱錐模型(底面是正方形,從頂點向底面作垂線,垂足是底面中心的四棱錐),將該四棱錐如圖2放置,若其正視圖為正三角形,則其體積為cm3 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設 為實數(shù),函數(shù) 的導函數(shù)為 ,且 是偶函數(shù), 則曲線: 在點 處的切線方程為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖程序框圖的算法思路源于歐幾里得名著《幾何原本》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖,若輸入m,n分別為225、135,則輸出的m=( )
A.5
B.9
C.45
D.90
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)G(x)=xlnx+(1﹣x)ln(1﹣x).
(1)求G(x)的最小值:
(2)記G(x)的最小值為e,已知函數(shù)f(x)=2aex+1+ ﹣2(a+1)(a>0),若對于任意的x∈(0,+∞),恒有f(x)≥0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的右焦點F( ),過點F作平行于y軸的直線截橢圓C所得的弦長為 . (Ⅰ)求橢圓的標準方程;
(Ⅱ)過點(1,0)的直線l交橢圓C于P,Q兩點,N點在直線x=﹣1上,若△NPQ是等邊三角形,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com