【題目】如圖程序框圖的算法思路,源于我國南宋時(shí)期的數(shù)學(xué)家秦九韶在他的著作《數(shù)書九章》中提出的秦九韶算法,執(zhí)行該程序框圖,若輸入的n,an , x分別為5,1,﹣2,且a4=5,a3=10,a2=10,a1=5,a0=1,則輸出的v=( )
A.1
B.2
C.﹣1
D.﹣2
【答案】C
【解析】解:模擬執(zhí)行程序,可得程序框圖的功能是根據(jù)算法 anxn+an﹣1xn﹣1+…+a1x+a0=(((anx+an﹣1)x+an﹣2)x+…+a1)x+a0求值;
∵n=5,a5=1,x=﹣2,a4=5,a3=10,a2=10,a1=5,a0=1,
∴輸出v=((((1×(﹣2)+5)×(﹣2)+10)×(﹣2))+10)×(﹣2)+5)×(﹣2)+1=﹣1.
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識(shí),掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+m|x+a|. (Ⅰ)當(dāng)m=a=﹣1時(shí),求不等式f(x)≥x的解集;
(Ⅱ)不等式f(x)≥2(0<m<1)恒成立時(shí),實(shí)數(shù)a的取值范圍是{a|a≤﹣3或a≥3},求實(shí)數(shù)m的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斜率為 的直線l與橢圓 + =1(a>b>0)交于不同的兩點(diǎn)A、B.若點(diǎn)A、B在x軸上的射影恰好為橢圓的兩個(gè)焦點(diǎn).
(1)求橢圓的離心率;
(2)P是橢圓上的動(dòng)點(diǎn),若△PAB面積最大值是4 ,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=cos2ωx的圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在 上為減函數(shù),則正實(shí)數(shù)ω的最大值為( )
A.
B.1
C.
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓E:x2+(y﹣ )2= 經(jīng)過橢圓C: + =1(a>b>0)的左右焦點(diǎn)F1 , F2 , 且與橢圓C在第一象限的交點(diǎn)為A,且F1 , E,A三點(diǎn)共線,直線l交橢圓C于M,N兩點(diǎn),且 =λ (λ≠0)
(1)求橢圓C的方程;
(2)當(dāng)三角形AMN的面積取得最大值時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0)的焦點(diǎn)為F,過F且垂直于x軸的直線與拋物線E交于A,B兩點(diǎn),E的準(zhǔn)線與x軸交于點(diǎn)C,△CAB的面積為4,以點(diǎn)D(3,0)為圓心的圓D過點(diǎn)A,B. (Ⅰ)求拋物線E和圓D的方程;
(Ⅱ)若斜率為k(|k|≥1)的直線m與圓D相切,且與拋物線E交于M,N兩點(diǎn),求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C1: =1,雙曲線C2: =1(a>0,b>0)的左、右焦點(diǎn)分別為F1 , F2 , M 是雙曲線C2 一條漸近線上的點(diǎn),且OM⊥MF2 , 若△OMF2的面積為 16,且雙曲線C1 , C2的離心率相同,則雙曲線C2的實(shí)軸長為( )
A.4
B.8
C.16
D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD的三視圖如圖所示,其五個(gè)頂點(diǎn)都在同一球面上,若四棱錐P﹣ABCD的側(cè)面積等于4(1+ ),則該外接球的表面積是( )
A.4π
B.12π
C.24π
D.36π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,公比q>1,且滿足a2+a3+a4=28,a3+2是a2與a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2an+5 , 且數(shù)列{bn}的前n項(xiàng)的和為Sn , 求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com