【題目】對(duì)定義在區(qū)間上的函數(shù),如果對(duì)任意,都有成立,那么稱函數(shù)在區(qū)間D上可被替代,D稱為替代區(qū)間.給出以下命題:

在區(qū)間上可被替代;

可被替代的一個(gè)替代區(qū)間

在區(qū)間可被替代,則;

,則存在實(shí)數(shù),使得在區(qū)間上被替代;

其中真命題的有

【答案】①②③

【解析】試題分析:對(duì)于,所以為真命題。對(duì)于,令hx=fx-gx,,所以函數(shù)hX)在區(qū)間上為增函數(shù),,,所以|fx-gx|<1,所以為真命題。對(duì)于。設(shè)hx=lnx-x+b,在區(qū)間[1,e]上單調(diào)遞減。h1=b-1,he=1-e+b,所以,所以.所以該命題為真命題。對(duì)于,1)若可取可取

所以不存在實(shí)數(shù)替代。(2)若

可取或更小,則所以不存在實(shí)數(shù)替代。綜上得,不存在實(shí)數(shù),使得在區(qū)間上被替代。所以為假命題。所以真命題有①②③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(lg2)20+C201(lg2)19lg5+…+C20r1(lg2)21r(lg5)r1+…+(lg5)20=(
A.1
B.(lg7)20
C.220
D.1020

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B點(diǎn)在AM上,D點(diǎn)在AN上,且對(duì)角線MN過C點(diǎn),已知AB=3米,AD=2米.

(Ⅰ要使矩形AMPN的面積大于32平方米,則DN的長應(yīng)在什么范圍內(nèi)?

)當(dāng)DN的長為多少時(shí),矩形花壇AMPN的面積最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在四棱錐中,,,,,的中點(diǎn)。

(1)求證:;

(2)線段上是否存在一點(diǎn),滿足?若存在,試求出二面角的余弦值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)。

(1)若曲線處的切線方程為,求實(shí)數(shù)的值;

(2)討論函數(shù)的單調(diào)性;

(3)若,且對(duì)任意,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,側(cè)棱底面,,

)若為線段上一點(diǎn),且,求證:平面;

)若分別是線段的中點(diǎn),設(shè)平面將三棱柱分割成左、右兩部分,記它們的體積分別為,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品, 生產(chǎn)的總成本萬元與年產(chǎn)之間的函數(shù)關(guān)系式可以近似地表示為,已知此生產(chǎn)線年產(chǎn)最大為.

(1)求年產(chǎn)為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;

(2)若毎噸產(chǎn)品平均出廠價(jià)為萬元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中,是自然對(duì)數(shù)的底數(shù))

)若關(guān)于的方程有唯一實(shí)根,求的值;

)若過原點(diǎn)作曲線的切線與直線垂直,證明:;

)設(shè),當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),動(dòng)點(diǎn)在圓上,線段的中垂線為直線,直線交直線于點(diǎn),動(dòng)點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)若點(diǎn)在第二象限,且相應(yīng)的直線與曲線和拋物線都相切,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案