【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)A的周長和面積同時等分成兩部分的函數(shù)稱為圓的一個“太極函數(shù)”.下列有關(guān)說法中:

①對圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);

②函數(shù)是圓的一個太極函數(shù);

③存在圓,使得是圓的太極函數(shù);

④直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù).

所有正確說法的序號是__________

【答案】②④

【解析】①偶函數(shù)平分圓的周長和面積;②也關(guān)于圓心 對稱,平分圓的周長和面積,所以函數(shù)是圓的一個太極函數(shù);③因為關(guān)于 對稱,所以圓,但此時不能平分圓的周長和面積④直線恒過圓心 ,所以平分圓的周長和面積,即直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù).

選②④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計劃在某水庫建一座至多安裝臺發(fā)電機的水電站,過去年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,不足的年份有年,不低于且不超過的年份有年,超過的年份有年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.

(1)求未來年中,設(shè)表示流量超過的年數(shù),求的分布列及期望;

(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:

年入流量

發(fā)電機最多可運行臺數(shù)

若某臺發(fā)電機運行,則該臺年利潤為萬元,若某臺發(fā)電機未運行,則該臺年虧損萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是 (  )

A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過50

B. 兩條直線平行,同旁內(nèi)角互補,如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠AB180°

C. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)

D. 在數(shù)列{an}中,a11,an (an1)(n≥2),由此歸納出{an}的通項公

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 的定義域為R,則實數(shù)a的取值范圍為(
A.(0,1)
B.[0,1]
C.(0,1]
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O:x2+y2=1和定點A(2,1),由O外一點P(a,b)向O引切線PQ,切點為Q,且滿足|PQ|=|PA|.

(1)求實數(shù)a,b間滿足的等量關(guān)系.

(2)求線段PQ長的最小值.

(3)若以P為圓心所作的P與O有公共點,試求半徑取最小值時P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海島B上有一座高為10米的塔,塔頂?shù)囊粋觀測站A,上午11時測得一游船位于島北偏東15°方向上,且俯角為30°的C處,一分鐘后測得該游船位于島北偏西75°方向上,且俯角45°的D處(假設(shè)游船勻速行駛).

(1)求該船行駛的速度(單位:米/分鐘).

(2)又經(jīng)過一段時間后,游船到達海島B的正西方向E處,問此時游船距離海島B多遠.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=f(x)的圖像為折線ABC,設(shè)g (x)=f[f(x)],則函數(shù)y=g(x)的圖像為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=log2 log4 + (2≤x≤2m , m>1,m∈R)
(1)求x=4 時對應(yīng)的y值;
(2)求該函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)=2;則奇函數(shù)f(x)的值域是

查看答案和解析>>

同步練習(xí)冊答案