【題目】今有一長2米寬1米的矩形鐵皮,如圖,在四個角上分別截去一個邊長為x米的正方形后,沿虛線折起可做成一個無蓋的長方體形水箱(接口連接問題不考慮)

(Ⅰ)求水箱容積的表達式,并指出函數(shù)的定義域;

(Ⅱ)若要使水箱容積不大于立方米的同時,又使得底面積最大,求x的值.

【答案】(1) {x|0x} (2)

【解析】

(Ⅰ)由已知該長方體形水箱高為x米,底面矩形長為(22x)米,寬(12x)米.

該水箱容積為

f(x)(22x)(12x)x4x36x22x

其中正數(shù)x滿足∴0x.

所求函數(shù)f(x)定義域為{x|0x}

(Ⅱ)f(x)≤4x3,得x ≤ 0x

定義域為{x|0x},x.

此時的底面積為S(x)(22x)(12x)4x26x2

(x∈[,)).由S(x)4(x)2,

可知S(x)[,)上是單調減函數(shù),

x.即滿足條件的x.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位后得到函數(shù)的圖象,則( )

A. 圖象關于直線對稱 B. 圖象關于點中心對稱

C. 在區(qū)間單調遞增 D. 在區(qū)間上單調遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)設的極值點.求,并求的單調區(qū)間;

2)證明:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋擲一個質地均勻的骰子的試驗,事件A表示“小于5的偶數(shù)點出現(xiàn)”,事件B表示“不小于5的點數(shù)出現(xiàn)”,則一次試驗中,事件A或事件B至少有一個發(fā)生的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 稿酬所得以個人每次取得的收入,定額或定率減除規(guī)定費用后的余額為應納稅所得額,每次收入不超過4000元,定額減除費用800元;每次收入在4000元以上的,定率減除20%的費用適用20%的比例稅率,并按規(guī)定對應納稅額減征30%,計算公式為:

(1)每次收入不超過4000元的:應納稅額=(每次收入額-800)×20%×(1-30%)

(2)每次收入在4000元以上的:應納稅額=每次收入額×(1-20%)×20%×(1-30%)已知某人出版一份書稿,共納稅280元,這個人應得稿費(扣稅前)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=ex1+alnx.(e為自然對數(shù)的底數(shù)),λmin{a+25}.(min{a,b}表示a,b中較小的數(shù).)

1)當a0時,設gx)=fx)﹣x,求函數(shù)gx)在[]上的最值;

2)當x1時,證明:fx+x2λx1+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】射擊測試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機變量表示該射手一次測試累計得分,如果的值不低于3分就認為通過測試,立即停止射擊;否則繼續(xù)射擊,但一次測試最多打靶3次,每次射擊的結果相互獨立。

(1)如果該射手選擇方案1,求其測試結束后所得分的分布列和數(shù)學期望E;

(2)該射手選擇哪種方案通過測試的可能性大?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足 .

1)證明: 是等比數(shù)列;

(2)令,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是函數(shù)定義域的一個子集,若存在,使得成立,則稱的一個“準不動點”,也稱在區(qū)間上存在準不動點,已知,.

(1)若,求函數(shù)的準不動點;

(2)若函數(shù)在區(qū)間上存在準不動點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案