【題目】已知分別是橢圓 的長軸與短軸的一個(gè)端點(diǎn), 分別是橢圓的左、右焦點(diǎn), 橢圓上的一點(diǎn), 的周長為.

(1)求橢圓的方程;

(2)若是圓上任一點(diǎn),過點(diǎn)作橢圓的切線,切點(diǎn)分別為,求證: .

【答案】(1);(2)見解析.

【解析】試題分析:(1)根據(jù)題意求解即可;

(2)討論切線的斜率不存在或?yàn)榱銜r(shí)和點(diǎn)切線斜率存在且不為零時(shí),設(shè)切線的方程為的方程為,分析條件可得是方程的兩個(gè)根,利用韋達(dá)定理可得進(jìn)而證得結(jié)論成立.

試題解析:

(1)由的周長為,得,由,得,又.故橢圓的方程為.

(2) ① 當(dāng)切線的斜率不存在或?yàn)榱銜r(shí),此時(shí)取,顯然直線與直線恰是橢圓的兩條切線.由圓及橢圓的對稱性,可知.

②點(diǎn)切線斜率存在且不為零時(shí),設(shè)切線的方程為的方程為,由,消,得,

與橢圓相切, .

.即;同理:切線中, , 是方程的兩個(gè)根,又在圓上, .

綜上所述: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=|x|,g(x)=
B.f(x)=lg x2 , g(x)=2lg x
C.f(x)= ,g(x)=x+1
D.f(x)= ? ,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{bn}(bn>0)的首項(xiàng)為1,且前n項(xiàng)和Sn滿足Sn﹣Sn1= + (n≥2).
(1)求{bn}的通項(xiàng)公式;
(2)若數(shù)列{ }前n項(xiàng)和為Tn , 問Tn 的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長為2的正三角形,頂點(diǎn)上的射影為點(diǎn),且, , .

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在統(tǒng)計(jì)學(xué)中,偏差是指個(gè)別測定值與測定的平均值之差,在成績統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行學(xué)科偏差分析,決定從全班56位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績偏差數(shù)據(jù)如下:

學(xué)生序號

1

2

3

4

5

6

7

8

數(shù)學(xué)偏差

20

15

13

3

2

-5

-10

-18

物理偏差

6.5

3.5

3.5

1.5

0.5

-0.5

-2.5

-3.5

(1)已知之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

(2)若這次考試該班數(shù)學(xué)平均分為118分,物理平均分為90.5,試預(yù)測數(shù)學(xué)成績126分的同學(xué)的物理成績.

參考公式: ,

參考數(shù)據(jù): , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=10,a2為整數(shù),且Sn≤S4 , 設(shè) ,則數(shù)列{bn}的前項(xiàng)和Tn為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)圓心角為直角的扇形花草房,半徑為1,點(diǎn)是花草房弧上一個(gè)動點(diǎn),不含端點(diǎn),現(xiàn)打算在扇形內(nèi)種花, ,垂足為, 將扇形分成左右兩部分,在左側(cè)部分三角形為觀賞區(qū),在右側(cè)部分種草,已知種花的單位面積的造價(jià)為,種草的單位面積的造價(jià)為2,其中為正常數(shù),設(shè),種花的造價(jià)與種草的造價(jià)的和稱為總造價(jià),不計(jì)觀賞區(qū)的造價(jià),總造價(jià)為

關(guān)于的函數(shù)關(guān)系式;

求當(dāng)為何值時(shí),總造價(jià)最小,并求出最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過△ABC所在平面α外一點(diǎn)P,作PO⊥α,垂足為O,連接PA,PB,PC,若點(diǎn)O是△ABC的內(nèi)心,則( )

A.PA=PB=PC
B.點(diǎn)P到AB,BC,AC的距離相等
C.PA⊥PB,PB⊥PC,PC⊥PA
D.PA,PB,PC與平面α所成的角相等

查看答案和解析>>

同步練習(xí)冊答案