【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)P的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcosa,且點(diǎn)P在直線l.

1)求a的值及直線l的直角坐標(biāo)方程;

2)曲線的極坐標(biāo)方程為.交于兩點(diǎn),求的值.

【答案】1a,l的直角坐標(biāo)方程為xy202

【解析】

1)將點(diǎn)P的極坐標(biāo)代入直線l的極坐標(biāo)方程即可求得a的值,再直線l的極坐標(biāo)方程化為直角坐標(biāo)即可求解;(2)寫出直線的參數(shù)方程,將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程的幾何意義代入即可求解。

解析:(1)由點(diǎn)P在直線ρcosa上,可得a,

所以直線l的方程可化為ρcosθρsinθ2,從而l的直角坐標(biāo)方程為xy20.

2)由ρcosθx,ρsinθy,

曲線的極坐標(biāo)方程為轉(zhuǎn)化為直角坐標(biāo)方程為

把曲線的參數(shù)方程為為參數(shù)),代入,

設(shè),對(duì)應(yīng)的參數(shù),則,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義域?yàn)?/span>的奇函數(shù),滿足,若,________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)銷售某件商品的經(jīng)驗(yàn)表明,該商品每日的銷量 (單位:千克)與銷售價(jià)格 (單位:元/千克)滿足關(guān)系式,其中,為常數(shù).已知銷售價(jià)格為/千克時(shí),每日可售出該商品千克.

1)求實(shí)數(shù)的值;

2)若該商品的成本為/千克,試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于回歸分析的說法中錯(cuò)誤的有( )個(gè)

(1). 殘差圖中殘差點(diǎn)所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報(bào)精確度越高.

(2). 回歸直線一定過樣本中心。

(3). 兩個(gè)模型中殘差平方和越小的模型擬合的效果越好

(4) .甲、乙兩個(gè)模型的分別約為0.88和0.80,則模型乙的擬合效果更好.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,函數(shù).

(1)當(dāng),時(shí),證明:曲線在直線的上方;

(2)若直線與曲線有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐S-ABCD的底面為正方形,SD底面ABCD如下列結(jié)論中不正確的是 。

A. ABSA

B. BC//平面SAD

C. BCSA所成的角等于ADSC所成的角

D. SA與平面SBD所成的角等于SC與平面SBD所成的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,m∈R.

(1)若m=3,求A∩B;

(2)已知命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時(shí)間為()

(結(jié)果精確到0.1.參考數(shù)據(jù):lg20.3010,lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

同步練習(xí)冊(cè)答案