【題目】24屆冬季奧林匹克運(yùn)動會將于2022年在北京-張家口舉行,為了搞好接待工作,組委會在某學(xué)院招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高變成如右所示的莖葉圖(單位: ):若身高在以上(包括)定義為高個子,身高在以下(不包括)定義為非高個子,且只有女高個子才能擔(dān)任禮儀小姐

1)如果分層抽樣的方法從高個子非高個子中提取5人,再從這5人中選2人,那么至少有一人是高個子的概率是多少?

2)若從所有高個子中選3名志愿者,用表示所選志愿者中能擔(dān)任禮儀小姐的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望.

【答案】12)見解析,1

【解析】

1)先根據(jù)分層抽樣確定5人中高個子非高個子人數(shù),再先求對立事件(都不是高個子)概率,最后根據(jù)對立事件概率公式求結(jié)果;

2)先確定隨機(jī)變量,再分別求對應(yīng)概率,寫出分布列,最后根據(jù)數(shù)學(xué)期望公式得結(jié)果.

解:(1)根據(jù)莖葉圖,有高個子”12人,非高個子”18人用分層抽樣的方法,每個人被抽中的概率是,所以選中的高個子人,非高個子人.用事件表示至少有一名高個子被選中,則它的對立事件表示沒有一名高個子被選中,則,因此,至少有一人是高個子的概率是

(2)依題意,的取值為0,1,2,3

,

,

因此,的分布列如下:

0

1

2

3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平面CDEF⊥平面ABCD,且四邊形ABCD為平行四邊形,∠DAB45°,四邊形CDEF為直角梯形,EFDC,EDCDAB3EF3,EDaAD.

1)求證:ADBF;

2)若線段CF上存在一點(diǎn)M,滿足AE∥平面BDM,求的值;

3)若a1,求二面角DBCF的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為

1)寫出直線和曲線的直角坐標(biāo)方程;

2)過動點(diǎn)且平行于的直線交曲線兩點(diǎn),若,求動點(diǎn)到直線的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的右焦點(diǎn)為,過的直線相交于兩點(diǎn),點(diǎn)滿足.

1)當(dāng)的傾斜角為時,求直線的方程;

2)試探究在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點(diǎn),點(diǎn)是曲線上的動點(diǎn), 的中點(diǎn).

(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)已知直線軸的交點(diǎn)為,與曲線的交點(diǎn)為,若的中點(diǎn)為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=2sinxxcosxx,f′x)為fx)的導(dǎo)數(shù).

1)證明:f′x)在區(qū)間(0,π)存在唯一零點(diǎn);

2)若x[0,π]時,fxax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面是邊長為3的正方形,平面,,,與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】時至21世紀(jì).環(huán)境污染已經(jīng)成為世界各國面臨的一大難題,其中大氣污染是目前城市急需應(yīng)對的一項(xiàng)課題.某市號召市民盡量減少開車出行以綠色低碳的出行方式支持節(jié)能減排.原來天天開車上班的王先生積極響應(yīng)政府號召,準(zhǔn)備每天從騎自行車和開小車兩種出行方式中隨機(jī)選擇一種方式出行.從即日起出行方式選擇規(guī)則如下:第一天選擇騎自行車方式上班,隨后每天用一次性拋擲6枚均勻硬幣的方法確定出行方式,若得到的正面朝上的枚數(shù)小于4,則該天出行方式與前一天相同,否則選擇另一種出行方式.

1)求王先生前三天騎自行車上班的天數(shù)X的分布列;

2)由條件概率我們可以得到概率論中一個很重要公式——全概率公式.其特殊情況如下:如果事件相互對立并且,則對任一事件B.設(shè)表示事件n天王先生上班選擇的是騎自行車出行方式的概率.

①用表示

②王先生的這種選擇隨機(jī)選擇出行方式有沒有積極響應(yīng)該市政府的號召,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】向量集合,對于任意,以及任意,都有,則稱為“類集”,現(xiàn)有四個命題:

①若為“類集”,則集合也是“類集”;

②若,都是“類集”,則集合也是“類集”;

③若都是“類集”,則也是“類集”;

④若都是“類集”,且交集非空,則也是“類集”.

其中正確的命題有________(填所有正確命題的序號)

查看答案和解析>>

同步練習(xí)冊答案