【題目】足球比賽中,一隊(duì)在本方罰球區(qū)內(nèi)犯規(guī),會(huì)被判罰點(diǎn)球,點(diǎn)球是進(jìn)攻方非常有效的得分手段.研究機(jī)構(gòu)對(duì)某位足球隊(duì)員的1000次點(diǎn)球訓(xùn)練進(jìn)行了統(tǒng)計(jì)分析,以幫助球員提高點(diǎn)球的命中率.如圖,將球門框內(nèi)的區(qū)域分成9個(gè)區(qū)域(區(qū)域代碼為1—9,球門框外的區(qū)域記做區(qū)域0),統(tǒng)計(jì)球員射點(diǎn)球時(shí)射中10個(gè)區(qū)域次數(shù)和進(jìn)球次數(shù)(即使射中球門框內(nèi),也可能被守門員撲出),得到如下的兩個(gè)頻率分布條形圖:

(其中射中率,得分率

1)根據(jù)上述頻率分布條形圖,求射中球門框內(nèi)時(shí),各區(qū)域進(jìn)球數(shù)的平均數(shù)(結(jié)果保留兩位小數(shù))和中位數(shù);

2)以該隊(duì)員這1000次點(diǎn)球練習(xí)的進(jìn)球頻率作為他在比賽中射點(diǎn)球時(shí)進(jìn)球的概率,設(shè)他在三次射點(diǎn)球時(shí)進(jìn)球數(shù)為,求的分布列和期望.

【答案】1)平均數(shù);中位數(shù)為812)詳見解析

【解析】

1)先求得各區(qū)域的進(jìn)球數(shù),再求平均數(shù)和中位數(shù)即可;

2)先求得比賽中射點(diǎn)球時(shí)進(jìn)球的概率,再根據(jù)服從二項(xiàng)分布,即可容易求得分布列和數(shù)學(xué)期望.

1)由頻率分布直方圖可知,射中門框內(nèi)的區(qū)域1時(shí),進(jìn)球數(shù)為

同理可求得區(qū)域29的進(jìn)球數(shù)分別為:63,9191,81,81,81,70,70.

各區(qū)域進(jìn)球數(shù)的平均數(shù).

容易知中位數(shù)為81.

2)由(1)可知該隊(duì)員這1000次點(diǎn)球練習(xí)的進(jìn)球數(shù):

,

他在比賽中射點(diǎn)球時(shí)進(jìn)球的概率.

進(jìn)球數(shù)為一個(gè)隨機(jī)變量,可能取值為0,1,2,3.

.

,

,

.

隨機(jī)變量的分布列為:

0

1

2

3

0.027

0.189

0.441

0.343

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).

1)若過(guò)點(diǎn),拋物線在點(diǎn)處的切線與在點(diǎn)處的切線交于點(diǎn).證明:點(diǎn)在定直線上.

2)若,點(diǎn)在曲線上,的中點(diǎn)均在拋物線上,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市教學(xué)研究室為了對(duì)今后所出試題的難度有更好的把握,提高命題質(zhì)量,對(duì)該市高三理科數(shù)學(xué)試卷的得分情況進(jìn)行了調(diào)研.從全市參加考試的理科考生中隨機(jī)抽取了100名考生的數(shù)學(xué)成績(jī)(滿分150分),將數(shù)據(jù)分成9組:,,,,,,,并整理得到如圖所示的頻率分布直方圖.用統(tǒng)計(jì)的方法得到樣本標(biāo)準(zhǔn)差,以頻率值作為概率估計(jì)值.

(Ⅰ)根據(jù)頻率分布直方圖,求抽取的100名理科考生數(shù)學(xué)成績(jī)的平均分及眾數(shù);

(Ⅱ)用頻率估計(jì)概率,從該市所有高三理科考生的數(shù)學(xué)成績(jī)中隨機(jī)抽取3個(gè),記理科數(shù)學(xué)成績(jī)位于區(qū)間內(nèi)的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望

(Ⅲ)從該市高三理科數(shù)學(xué)考試成績(jī)中任意抽取一份,記其成績(jī)?yōu)?/span>,依據(jù)以下不等式評(píng)判(表示對(duì)應(yīng)事件的概率):

,②

,其中

評(píng)判規(guī)則:若至少滿足以上兩個(gè)不等式,則給予這套試卷好評(píng),否則差評(píng).試問(wèn):這套試卷得到好評(píng)還是差評(píng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過(guò)調(diào)查得到如下數(shù)據(jù):

間隔時(shí)間(分鐘)

10

11

12

13

14

15

等侯人數(shù)(人)

23

25

26

29

28

31

調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若差值的絕對(duì)值不超過(guò)1,則稱所求方程是“恰當(dāng)回歸方程”.

1)若選取的是后面4組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;

2)為了使等候的乘客不超過(guò)35人,試用(1)中方程估計(jì)間隔時(shí)間最多可以設(shè)置為多少(精確到整數(shù))分鐘?

附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)a,.

1)若,且內(nèi)有且只有一個(gè)零點(diǎn),求a的值;

2)若,且有三個(gè)不同零點(diǎn),問(wèn)是否存在實(shí)數(shù)a使得這三個(gè)零點(diǎn)成等差數(shù)列?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由;

3)若,,試討論是否存在,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,的頂點(diǎn),且、成等差數(shù)列.

1)求的頂點(diǎn)的軌跡方程;

2)直線與頂點(diǎn)的軌跡交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在直線上時(shí),試問(wèn):線段的垂直平分線是否恒過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,已知四邊形ABCD是邊長(zhǎng)為2的正方形,平面ABCDE是棱PB的中點(diǎn),且過(guò)AEAD的平面與棱PC交于點(diǎn)F.

1)求證:;

2)若平面平面PBC,求線段PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1ab0)的左右焦點(diǎn)分別為F1,F2,點(diǎn)P是橢圓C上一點(diǎn),以PF1為直徑的圓Ex2過(guò)點(diǎn)F2

1)求橢圓C的方程;

2)過(guò)點(diǎn)P且斜率大于0的直線l1C的另一個(gè)交點(diǎn)為A,與直線x4的交點(diǎn)為B,過(guò)點(diǎn)(3,)且與l1垂直的直線l2與直線x4交于點(diǎn)D,求△ABD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m{11,13,1517,19},n{2000,2001,2019},則mn的個(gè)位數(shù)是1的概率為____________ .

查看答案和解析>>

同步練習(xí)冊(cè)答案