【題目】在直四棱柱中,四邊形為平行四邊形,的中點(diǎn),,.

1)求證:平面平面;

2)求直線與直線所成角的余弦值.

【答案】1)證明見解析

2

【解析】

1)取的中點(diǎn),連接,,在矩形中,得到,易得平面,從而得到,利用線面垂直的判定定理得到平面,由直四棱柱的幾何特征,知,有平面,再利用面面垂直的判定定理得到平面平面.

2)建立空間直角坐標(biāo)系,分別求得,的坐標(biāo),代入公式求解.

1)如圖所示:

的中點(diǎn),連接,.

在直四棱柱中,四邊形為平行四邊形,所以

在矩形中,因?yàn)?/span>,,

所以,

所以,所以

因?yàn)?/span>,,所以,所以,

因?yàn)?/span>平面,所以,

因?yàn)?/span>,所以平面,所以,

因?yàn)?/span>,所以平面,所以平面

因?yàn)?/span>平面,所以平面平面

2)建立如圖的坐標(biāo)系,

,,,

所以,,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點(diǎn)生活或配合其他民俗活動(dòng)的民間藝術(shù);蘊(yùn)含了極致的數(shù)學(xué)美和豐富的傳統(tǒng)文化信息,現(xiàn)有一幅剪紙的設(shè)計(jì)圖,其中的4個(gè)小圓均過正方形的中心,且內(nèi)切于正方形的兩鄰邊.若在正方形內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自黑色部分的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)

1的極小值點(diǎn);

2)函數(shù)有且只有1個(gè)零點(diǎn);

3恒成立;

4)設(shè)函數(shù),若存在區(qū)間,使上的值域是,則

上述說法正確的序號(hào)為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)一個(gè)袋子里有紅、黃、藍(lán)色小球各一個(gè)現(xiàn)每次從袋子里取出一個(gè)球(取出某色球的概率均相同),確定顏色后放回,直到連續(xù)兩次均取出紅色球時(shí)為止,記此時(shí)取出球的次數(shù)為ξ,則ξ的數(shù)學(xué)期望為_____ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的幾何體中,四邊形為長(zhǎng)方形,平面,平面,且,上一點(diǎn),且.

1)求證:平面;

2)若,求此多面體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,青蒿素作為一線抗瘧藥品得到大力推廣某農(nóng)科所為了深入研究海拔因素對(duì)青蒿素產(chǎn)量的影響,在山上和山下的試驗(yàn)田中分別種植了株青蒿進(jìn)行對(duì)比試驗(yàn).現(xiàn)在從山上和山下的試驗(yàn)田中各隨機(jī)選取了株青蒿作為樣本,每株提取的青蒿素產(chǎn)量(單位:克)如下表所示:

編號(hào)位置

山上

山下

1)根據(jù)樣本數(shù)據(jù),試估計(jì)山下試驗(yàn)田青蒿素的總產(chǎn)量;

2)記山上與山下兩塊試驗(yàn)田單株青蒿素產(chǎn)量的方差分別為,根據(jù)樣本數(shù)據(jù),試估計(jì)的大小關(guān)系(只需寫出結(jié)論);

3)從樣本中的山上與山下青蒿中各隨機(jī)選取株,記這株的產(chǎn)量總和為,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為直角梯形,ABCD,ABAD,PA⊥平面ABCD,E是棱PC上一點(diǎn).

1)證明:平面ADE⊥平面PAB.

2)若PE4EC,O為點(diǎn)E在平面PAB上的投影,,ABAP2CD2,求四棱錐PADEO的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為,其圖象關(guān)于直線對(duì)稱.給出下面四個(gè)結(jié)論:①將的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱;②點(diǎn)圖象的一個(gè)對(duì)稱中心;③;④在區(qū)間上單調(diào)遞增.其中正確的結(jié)論為(

A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)有兩個(gè)極值點(diǎn),試求實(shí)數(shù)的取值范圍;

2)若,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案