【題目】一個簡單圖中兩兩相鄰的t個項點稱為一個團(tuán),與其余每個頂點均相鄰的頂點稱為中心點.給定整數(shù)及滿足的整數(shù)k,一個n階簡單圖G中不存在k+1團(tuán),其全部k團(tuán)記為.

(1)證明:;

(2)若在圖G中再添加一條邊就存在k+1團(tuán),求圖G的中心點個數(shù)的最小值.

【答案】(1)見解析;(2)見解析

【解析】

將題給方程兩邊模3得.從而,.

.

1.當(dāng)y=1時,原方程為.

上式兩邊模13得.

從而,.記.

則原方程化為

兩邊模5得.

從而,

則式兩邊模16得,矛盾.

2.當(dāng)時,原方程兩邊模8得.

從而,.記.

則原方程化為.

.

注意到,.

由方程組

兩邊模4得.

從而,y為奇數(shù).

則式兩邊模5得,矛盾.

故方程組無解.

由方程組

上式兩邊模4得.

從而,y為偶數(shù).

,則原方程化為

.

注意到,.

.

,由,等式兩邊模4得.

從而,.

,則原方程化為.

注意到,.

.

但此時,矛盾.

,,.

.

四、1.記.

即證

當(dāng)m=1時,.

假設(shè)式成立.

對m,記,,.

,.

下面證明:

因為集合C中每個點與集合A中所有點相鄰,所以,組成團(tuán),但不是k+1團(tuán).

.

于是,由式

故式對正整數(shù)m也成立.

由數(shù)學(xué)歸納法,不等式得證.

2.本題條件中“差一條邊就含k+1團(tuán)”,屬于“極圖”特征.此時,有.

事實上,假設(shè).則存在圖G的某個頂點,從而,頂點v必與集合中某個頂點u不相鄰.否則,構(gòu)成k+1團(tuán),與極圖G矛盾.現(xiàn)添上一條邊vu,由題設(shè)條件,知圖G存在k+1團(tuán),記作,則是圖G的一個k團(tuán),亦矛盾.

記圖G中全部中心點的集合為C.則.

再由1得.

構(gòu)造等號成立的例子.令.

其中,除點不相鄰?fù),其他任意兩點均相鄰.則該圖G的中心點的集合為,并且不存在k+1團(tuán)(因為任取圖G的k+1個頂點,總包含一點對,但任意添加一條邊 ,總能出現(xiàn)k+1團(tuán),G是極圖.

故圖G中心點個數(shù).

綜上,圖G中心點個數(shù)的最小值為 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對一堆100粒的石子進(jìn)行如下操作每次任選石子數(shù)大于1的一堆任意分成不空的兩堆,直到每堆1(100為止證明

(1)無論如何操作,必有某個時刻存在20堆,其石子總數(shù)為60;

(2)可以進(jìn)行適當(dāng)?shù)夭僮魇沟萌魏螘r刻不存在19堆,其石子總數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4位同學(xué)在同一天的上午、下午參加身高與體重、立定跳遠(yuǎn)、肺活量、握力、臺階五個項目的測試,每位同學(xué)測試兩個項目,分別在上午和下午,且每人上午和下午測試的項目不能相同.若上午不測握力,下午不測臺階,其余項目上午、下午都各測試一人,則不同的安排方式的種數(shù)為( )

A.264B.72C.266D.274

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次不等式ax2+x+b>0的解集為(-∞,-2)∪(1,+∞).

(Ⅰ)求ab的值;

(Ⅱ)求不等式ax2-(c+bx+bc<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國人民大學(xué)發(fā)布的《中國大學(xué)生創(chuàng)業(yè)報告》顯示,在國家“雙創(chuàng)”政策的引導(dǎo)下,隨著社會各方對于大學(xué)生創(chuàng)業(yè)實踐的支持力度不斷加強(qiáng),大學(xué)生創(chuàng)業(yè)意向高漲,近九成的在校大學(xué)生曾考慮過創(chuàng)業(yè),近兩成的學(xué)生有強(qiáng)烈的創(chuàng)業(yè)意向. 數(shù)據(jù)充分表明,大學(xué)生正以飽滿的熱情投身到創(chuàng)新創(chuàng)業(yè)的大潮之中,大學(xué)生創(chuàng)業(yè)實踐正呈現(xiàn)出生機(jī)勃勃的態(tài)勢。小張大學(xué)畢業(yè)后從2008年年初開始創(chuàng)業(yè),下表是2019年春節(jié)他將自己從2008—2018年的凈利潤按年度給出的一個總的統(tǒng)計表(為方便運算,數(shù)據(jù)作了適當(dāng)?shù)奶幚,單位:萬元).

年度

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

年份序號

1

2

3

4

5

6

7

8

9

10

11

利潤

6

7

8

9

10

10

11

12

13

13

14

(Ⅰ)散點圖如圖所示,根據(jù)散點圖指出年利潤(單位:萬元)和年份序號之間是否具有線性關(guān)系?并用相關(guān)系數(shù)說明用線性回歸模型描述年凈利潤與年份序號之間關(guān)系的效果;

(Ⅱ)試用線性回歸模型描述年凈利潤與年份序號之間的關(guān)系:求出年凈利潤關(guān)于年份序號的回歸方程(系數(shù)精確到0.1),并幫小張估計他2019年可能賺到的凈利潤.

附注:參考數(shù)據(jù)

參考公式:越大擬合效果越好.回歸方程斜率的最小二乘法估計公式為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱柱中,側(cè)棱底面,,,,,

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司在2020年年初準(zhǔn)備將1000萬元投資到“低碳”項目上,現(xiàn)有兩個項目供選擇:

項目一:新能源汽車.據(jù)市場調(diào)研,投資到該項目上,到年底可能獲利40%,也可能虧損10%,且這兩種情況發(fā)生的概率分別為

項目二:通信設(shè)備據(jù)市場調(diào)研,投資到該項目上,到年底可能獲利50%,可能損失30%,也可能不賠不賺,且這三種情況發(fā)生的概率分別為,.針對以上兩個投資項目,請你為投資公司選擇一個合理的項目,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】18屆國際籃聯(lián)籃球世界杯(世界男子籃球錦標(biāo)賽更名為籃球世界杯后的第二屆世界杯)于2019831日至915日在中國的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.中國隊12名球員在第一場和第二場得分的莖葉圖如圖所示,則下列說法錯誤的是(

A.第一場得分的中位數(shù)為B.第二場得分的平均數(shù)為

C.第一場得分的極差大于第二場得分的極差D.第一場與第二場得分的眾數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生學(xué)習(xí)的自律性很重要.某學(xué)校對自律性與學(xué)生成績是否有關(guān)進(jìn)行了調(diào)研,從該校學(xué)生中隨機(jī)抽取了100名學(xué)生,通過調(diào)查統(tǒng)計得到列聯(lián)表的部分?jǐn)?shù)據(jù)如下表:

自律性一般

自律性強(qiáng)

合計

成績優(yōu)秀

40

成績一般

20

合計

50

100

1)補(bǔ)全列聯(lián)表中的數(shù)據(jù);

2)判斷是否有的把握認(rèn)為學(xué)生的自律性與學(xué)生成績有關(guān).

參考公式及數(shù)據(jù):.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案