【題目】設等差數列{an}的前n項和為Sn , 且a2=8,S4=40.數列{bn}的前n項和為Tn , 且Tn﹣2bn+3=0,n∈N* .
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)設cn= , 求數列{cn}的前n項和Pn .
【答案】解:(Ⅰ)設等差數列{an}的公差為d,
由題意,得,
解得,
∴an=4n,
∵Tn﹣2bn+3=0,∴當n=1時,b1=3,當n≥2時,Tn﹣1﹣2bn﹣1+3=0,
兩式相減,得bn=2bn﹣1 , (n≥2)
則數列{bn}為等比數列,
∴;
(Ⅱ) .
當n為偶數時,Pn=(a1+a3+…+an﹣1)+(b2+b4+…+bn)
=.
當n為奇數時,
(法一)n﹣1為偶數,Pn=Pn﹣1+cn=2(n﹣1)+1+(n﹣1)2﹣2+4n=2n+n2+2n﹣1,
(法二)Pn=(a1+a3+…+an﹣2+an)+(b2+b4+…+bn﹣1)
=.
∴ .
【解析】(Ⅰ)運用等差數列的通項公式與求和公式,根據條件列方程,求出首項和公差,得到通項an , 運用n=1時,b1=T1 , n>1時,bn=Tn﹣Tn﹣1 , 求出bn;
(Ⅱ)寫出cn , 然后運用分組求和,一組為等差數列,一組為等比數列,分別應用求和公式化簡即可.
【考點精析】解答此題的關鍵在于理解數列的前n項和的相關知識,掌握數列{an}的前n項和sn與通項an的關系,以及對等差數列的性質的理解,了解在等差數列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數列是等差數列.
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,直線l的參數方程 (t為參數),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為p2cos2θ+p2sinθ﹣2psinθ﹣3=0
(1)求直線l的極坐標方程;
(2)若直線l與曲線C相交于A,B兩點,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知=(2﹣sin(2x+),﹣2),=(1,sin2x),f(x)= , (x∈[0,])
(1)求函數f(x)的值域;
(2)設△ABC的內角A,B,C的對邊長分別為a,b,c,若f()=1,b=1,c= , 求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定下列四個命題:
若一個平面內的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
若一個平面經過另一個平面的垂線,那么這兩個平面相互垂直;
垂直于同一直線的兩條直線相互平行;
若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直.
其中,為真命題的是
A. 和 B. 和 C. 和 D. 和
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,已知點A(5,-2),B(7,3),且邊AC的中點M在y軸上,邊BC的中點N在x軸上,求:
(1)頂點C的坐標;
(2)直線MN的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的離心率為,且過點P(3,2).
(1)求橢圓C`的標準方程;
(2)設與直線OP(O為坐標原點)平行的直線交橢圓C于A,B兩點,求證:直線PA,PB與軸圍成一個等腰三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若在其定義域內存在實數,使得成立,則稱有“※點”。
(1)判斷函數在上是否有“※點”。并說明理由;
(2)若函數在上有“※點”,求正實數a的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com