已知函數(shù)在區(qū)間上的最大值為,最小值為。
(1)求
(2)作出的圖像,并分別指出的最小值和的最大值各為多少?

(1),;
(2)y=g(a)的最小值為-1; y=h(a)的最大值為-1。

解析
試題分析:(1).,又
 當時,;
時,,
時,,
時,,。
綜上可知:。
(2)的圖像分別為:

由圖象可知,y=g(a)的最小值為-1。
由圖象知,函數(shù)y=h(a)的最大值為-1。
考點:本題考查二次函數(shù)在閉區(qū)間上的最值和函數(shù)的圖象。
點評:本題主要考查二次函數(shù)在閉區(qū)間上最值的求解,解題中注意應用分類討論思想,其分類討論的依據(jù)主要是:比較對稱軸與區(qū)間的位置關系。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)
如圖,在半徑為圓形(為圓心)鋁皮上截取一塊矩形材料,其中點在圓上,點在兩半徑上,現(xiàn)將此矩形鋁皮卷成一個以為母線的圓柱形罐子的側面(不計剪裁和拼接損耗),設矩形的邊長,圓柱的體積為.

(1)寫出體積關于的函數(shù)關系式,并指出定義域;
(2)當為何值時,才能使做出的圓柱形罐子體積最大?最大體積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=x2+(2+lga)x+lgb,f(-1)=-2.
(1)求a與b的關系式;
(2)若f(x)≥2x恒成立,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某工廠修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的 造價為150元,池壁每平方米的造價為120元.設池底長方形長為米.
(1)求底面積,并用含的表達式表示池壁面積;
(2)怎樣設計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某企業(yè)為打入國際市場,決定從A、B兩種產品中只選擇一種進行投資生產.已
知投資生產這兩種產品的有關數(shù)據(jù)如下表:(單位:萬美元)

項目類別
 
年固定成本
 
每件產品成本
 
每件產品銷售價
 
每年最多可生產的件數(shù)
 
A產品
 
10
 
m
 
5
 
100
 
B產品
 
20
 
4
 
9
 
60
 
其中年固定成本與年生產的件數(shù)無關,m為待定常數(shù),其值由生產A產品的原材料價格決定,預計m∈[3,4].另外,年銷售x件B產品時需上交0.05x2萬美元的特別關稅.假設生產出來的產品都能在當年銷售出去.
(1)寫出該廠分別投資生產A、B兩種產品的年利潤y1,y2與生產相應產品的件數(shù)x之間的函數(shù)關系并指明其定義域;
(2)如何投資才可獲得最大年利潤?請你做出規(guī)劃.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
設函數(shù),
(1) 如果且對任意實數(shù)均有,求的解析式;
(2) 在(1)在條件下, 若在區(qū)間是單調函數(shù),求實數(shù)的取值范圍;
(3) 已知為偶函數(shù),如果,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)
(1)求值: ;
(2)求值: (lg2)2+lg5·lg20+ lg100;
(3)已知. 求a、b,并用表示.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)某公司是專門生產健身產品的企業(yè),第一批產品上市銷售40天內全部售完,該公司對第一批產品上市后的市場銷售進行調研,結果如圖(1)、(2)所示.其中(1)的拋物線表示的是市場的日銷售量與上市時間的關系;(2)的折線表示的是每件產品的銷售利潤與上市時間的關系.

(1)寫出市場的日銷售量與第一批產品A上市時間t的關系式;
(2)第一批產品A上市后的第幾天,這家公司日銷售利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

計算:(1)
( 2 )

查看答案和解析>>

同步練習冊答案