【題目】如圖,在底面是正方形的四棱錐P﹣ABCD中,PA⊥面ABCD,BD交AC于點E,F(xiàn)是PC中點,G為AC上一點.
(1)求證:BD⊥FG;
(2)確定點G在線段AC上的位置,使FG∥平面PBD,并說明理由;
(3)當(dāng)二面角B﹣PC﹣D的大小為 時,求PC與底面ABCD所成角的正切值.
【答案】
(1)證明:∵PA⊥面ABCD,四邊形ABCD是正方形,其對角線BD,AC交于點E,
∴PA⊥BD,AC⊥BD,
∴BD⊥平面PAC,
∵FG平面PAC,
∴BD⊥FG
或用向量方法:
解:以A為原點,AB,AD,AP所在的直線分別為x,y,z軸建立空間直角坐標(biāo)系如圖所示,設(shè)正方形ABCD的邊長為1,則A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,a)(a>0),
E( ),F(xiàn)( ),G(m,m,0)(0<m< )
=(﹣1,1,0), =( ), × =﹣m+ +m﹣ +0=0,
∴BD⊥FG
(2)解:當(dāng)G為EC中點,即AG= AC時,F(xiàn)G∥平面PBD,
理由如下:
連接PE,由F為PC中點,G為EC中點,知FG∥PE,
而FG平面PBD,PE平面PBD,
故FG∥平面PBD.
或用向量方法:
要使FG∥平面PBD,只需FG∥EP,而 =( ),由 = 可得 ,
解得l=1,m= ,
∴G( , ,0),∴ ,
故當(dāng)AG= AC時,F(xiàn)G∥平面PBD
(3)解:作BH⊥PC于H,連接DH,
∵PA⊥面ABCD,四邊形ABCD是正方形,
∴PB=PD,
又∵BC=DC,PC=PC,
∴△PCB≌△PCD,
∴DH⊥PC,且DH=BH,
∴∠BHD就是二面角B﹣PC﹣D的平面角,
即∠BHD= ,
∵PA⊥面ABCD,∴∠PCA就是PC與底面ABCD所成的角
連接EH,則EH⊥BD,∠BHE= ,EH⊥PC,
∴tan∠BHE= ,而BE=EC,
∴ ,∴sin∠PCA= ,∴tan∠PCA= ,
∴PC與底面ABCD所成角的正切值是
或用向量方法:
設(shè)平面PBC的一個法向量為 =(x,y,z),
則 ,而 , ,
∴ ,取z=1,得 =(a,0,1),同理可得平面PDC的一個法向量為 =(0,a,1),
設(shè) , 所成的角為β,則|cosβ|=|cos |= ,即 = ,∴ ,∴a=1
∵PA⊥面ABCD,∴∠PCA就是PC與底面ABCD所成的角,
∴tan∠PCA=
【解析】(1)要證:BD⊥FG,先證BD⊥平面PAC即可.(2)確定點G在線段AC上的位置,使FG∥平面PBD,F(xiàn)G∥平面PBD內(nèi)的一條直線即可.(3)當(dāng)二面角B﹣PC﹣D的大小為 時,求PC與底面ABCD所成角的正切值.只要作出二面角的平面角,解三角形即可求出結(jié)果.這三個問題可以利用空間直角坐標(biāo)系,解答(1)求數(shù)量積即可.(2)設(shè)才點的坐標(biāo),向量共線即可解答.(3)利用向量數(shù)量積求解法向量,然后轉(zhuǎn)化求出PC與底面ABCD所成角的正切值.
【考點精析】通過靈活運(yùn)用空間中直線與直線之間的位置關(guān)系和平面與平面之間的位置關(guān)系,掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點;兩個平面平行沒有交點;兩個平面相交有一條公共直線即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)
在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的上頂點到焦點的距離為2,離心率為.
(1)求a,b的值.
(2)設(shè)P是橢圓C長軸上的一個動點,過點P作斜率為k的直線l交橢圓C于A、B兩點.
(ⅰ)若k=1,求△OAB面積的最大值;
(ⅱ)若PA2+PB2的值與點P的位置無關(guān),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣2ax+1+lnx
(1)當(dāng)a=0時,若函數(shù)f(x)在其圖象上任意一點A處的切線斜率為k,求k的最小值,并求此時的切線方程;
(2)若函數(shù)f(x)的極大值點為x1 , 證明:x1lnx1﹣ax12>﹣1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)在平面直角坐標(biāo)系中,已知橢圓: 的離心率,直線過橢圓的右焦點,且交橢圓于, 兩點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點,連結(jié),過點作垂直于軸的直線,設(shè)直線與直線交于點,試探索當(dāng)變化時,是否存在一條定直線,使得點恒在直線上?若存在,請求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對該店鋪中的五種商品有購買意向.已知該網(wǎng)民購買兩種商品的概率均為,購買兩種商品的概率均為,購買種商品的概率為.假設(shè)該網(wǎng)民是否購買這五種商品相互獨立.
(1)求該網(wǎng)民至少購買4種商品的概率;
(2)用隨機(jī)變量表示該網(wǎng)民購買商品的種數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a,b,c,且滿足(2a﹣c)cosB=bcosC
(1)求角B的大小;
(2)若b= ,a+c=4,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)底數(shù).
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;
(3)已知,若函數(shù)對任意都成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若是兩個相交平面,則在下列命題中,真命題的序號為 .(寫出所有真命題的序號)
①若直線,則在平面內(nèi),一定不存在與直線平行的直線.
②若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直.
③若直線,則在平面內(nèi),不一定存在與直線垂直的直線.
④若直線,則在平面內(nèi),一定存在與直線垂直的直線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com