【題目】已知函數(shù)f(x)= +a是奇函數(shù)
(1)求常數(shù)a的值
(2)判斷f(x)的單調(diào)性并給出證明
(3)求函數(shù)f(x)的值域.
【答案】
(1)解:函數(shù)f(x)= +a是奇函數(shù),可得f(x)+f(﹣x)=0
∴ +a+ +a=0,解得a=
(2)解:由(1)得f(x)= + 在(﹣∞,0)與(0,+∞)上都是減函數(shù),證明如下
任取x1<x2則
f(x1)﹣f(x2)= ﹣ = ,
當(dāng)x1,x2∈(0,+∞)時(shí),2x1﹣1>0,2x2﹣1>0,2x2﹣2x1>0,
所以 ,>0,有f(x1)﹣f(x2)>0;
當(dāng)x1,x2∈(﹣∞,0)時(shí),2x1﹣1<0,2x2﹣1<0,2x2﹣2x1>0,
所以 >0,有f(x1)﹣f(x2)>0,
綜上知,函數(shù)f(x)在(﹣∞,0)與(0,+∞)上都是減函數(shù)
(3)解:2x→0時(shí),f(x)→﹣ ,2x小于1趨向于1時(shí),f(x)→﹣∞,
2x→+∞時(shí),f(x)→ ,2x大于1趨向于1時(shí),f(x)→+∞,
∴函數(shù)f(x)的值域是(﹣∞,﹣ )∪( ,+∞)
【解析】(1)函數(shù)f(x)是奇函數(shù),可得方程f(x)+f(﹣x)=0代入函數(shù)解析式,由此方程求出a的值;(2)由(1)函數(shù)f(x)= + ,由解析式形式知f(x)= + 在(﹣∞,0)與(0,+∞)上都是減函數(shù),由定義證明即可;(3)結(jié)合函數(shù)的單調(diào)性,從而求出函數(shù)的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)南市開展支教活動,有五名教師被隨機(jī)的分到A、B、C三個(gè)不同的鄉(xiāng)鎮(zhèn)中學(xué),且每個(gè)鄉(xiāng)鎮(zhèn)中學(xué)至少一名教師,
(1)求甲乙兩名教師同時(shí)分到一個(gè)中學(xué)的概率;
(2)求A中學(xué)分到兩名教師的概率;
(3)設(shè)隨機(jī)變量X為這五名教師分到A中學(xué)的人數(shù),求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是棱CD上的動點(diǎn),G為C1D1的中點(diǎn),H為A1G的中點(diǎn).
(1)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),求證:EF⊥AH;
(2)設(shè)二面角C1﹣EF﹣C的大小為θ,試確定點(diǎn)F的位置,使得sin θ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽另一個(gè)人當(dāng)裁判,設(shè)每周比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判,假設(shè)每局比賽中甲勝乙的概率為,甲勝丙,乙勝丙的概率都是,各局的比賽相互獨(dú)立,第一局甲當(dāng)裁判.
(1)求第三局甲當(dāng)裁判的概率;
(2)記前四次中乙當(dāng)裁判的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:
①x>1時(shí),f(x)<0;
②f( )=1;
③對任意的正實(shí)數(shù)x,y,都有f(xy)=f(x)+f(y).
(1)求證:f( )=﹣f(x);
(2)求證:f(x)在定義域內(nèi)為減函數(shù);
(3)求滿足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= (其中常數(shù)a>0,且a≠1).
(1)當(dāng)a=10時(shí),解關(guān)于x的方程f(x)=m(其中常數(shù)m>2 );
(2)若函數(shù)f(x)在(﹣∞,2]上的最小值是一個(gè)與a無關(guān)的常數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣1+ ,(a∈R,e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),若直線l:y=kx﹣1與曲線y=f(x)沒有公共點(diǎn),求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中, , , 分別為棱的中點(diǎn).
(1)在平面內(nèi)過點(diǎn)作平面交于點(diǎn),并寫出作圖步驟,但不要求證明.
(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com