【題目】已知,.
(1)求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),若關(guān)于的方程存在兩個(gè)正實(shí)數(shù)根,證明:且.
【答案】(1);(2)見(jiàn)解析
【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),再計(jì)算出,,即可求出切線方程;
(2)由存在兩個(gè)正實(shí)數(shù)根,整理得方程存在兩個(gè)正實(shí)數(shù)根.令利用導(dǎo)數(shù)研究其單調(diào)性、最值,因?yàn)?/span>有兩個(gè)零點(diǎn),即,得.
因?yàn)閷?shí)數(shù),是的兩個(gè)根,所以,從而.令,,則,變形整理得.要證,則只需證,即只要證,
再構(gòu)造函數(shù)即可證明.
(1)解:∵,
∴,,
∴曲線在點(diǎn)處的切線方程為.
(2)證明:由存在兩個(gè)正實(shí)數(shù)根,
整理得方程存在兩個(gè)正實(shí)數(shù)根.
由,知,
令,則,
當(dāng)時(shí),,在上單調(diào)遞增;
當(dāng)時(shí),,在上單調(diào)遞減.
所以.
因?yàn)?/span>有兩個(gè)零點(diǎn),即,得.
因?yàn)閷?shí)數(shù),是的兩個(gè)根,
所以,從而.
令,,則,變形整理得.
要證,則只需證,即只要證,
結(jié)合對(duì)數(shù)函數(shù)的圖象可知,只需要證,兩點(diǎn)連線的斜率要比,兩點(diǎn)連線的斜率小即可.
因?yàn)?/span>,所以只要證,整理得.
令,則,
所以在上單調(diào)遞減,即,
所以成立,故成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車(chē)尾氣中含有一氧化碳(),碳?xì)浠衔铮?/span>)等污染物,是環(huán)境污染的主要因素之一,汽車(chē)在使用若干年之后排放的尾氣中的污染物會(huì)出現(xiàn)遞增的現(xiàn)象,所以國(guó)家根據(jù)機(jī)動(dòng)車(chē)使用和安全技術(shù)、排放檢驗(yàn)狀況,對(duì)達(dá)到報(bào)廢標(biāo)準(zhǔn)的機(jī)動(dòng)車(chē)實(shí)施強(qiáng)制報(bào)廢.某環(huán)保組織為了解公眾對(duì)機(jī)動(dòng)車(chē)強(qiáng)制報(bào)廢標(biāo)準(zhǔn)的了解情況,隨機(jī)調(diào)查了100人,所得數(shù)據(jù)制成如下列聯(lián)表:
不了解 | 了解 | 總計(jì) | |
女性 | 50 | ||
男性 | 15 | 35 | 50 |
總計(jì) | 100 |
(1)若從這100人中任選1人,選到了解機(jī)動(dòng)車(chē)強(qiáng)制報(bào)廢標(biāo)準(zhǔn)的人的概率為,問(wèn)是否有的把握認(rèn)為“對(duì)機(jī)動(dòng)車(chē)強(qiáng)制報(bào)廢標(biāo)準(zhǔn)是否了解與性別有關(guān)”?
(2)該環(huán)保組織從相關(guān)部門(mén)獲得某型號(hào)汽車(chē)的使用年限與排放的尾氣中濃度的數(shù)據(jù),并制成如圖所示的折線圖,若該型號(hào)汽車(chē)的使用年限不超過(guò)15年,可近似認(rèn)為排放的尾氣中濃度與使用年限線性相關(guān),試確定關(guān)于的回歸方程,并預(yù)測(cè)該型號(hào)的汽車(chē)使用12年排放尾氣中的濃度是使用4年的多少倍.
附:()
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:用最小二乘法求線性回歸方程系數(shù)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時(shí)間,對(duì)每個(gè)工人組裝一個(gè)該產(chǎn)品的用時(shí)作了記錄,得到大量統(tǒng)計(jì)數(shù)據(jù).從這些統(tǒng)計(jì)數(shù)據(jù)中隨機(jī)抽取了個(gè)數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時(shí)不超過(guò)(分鐘),則稱(chēng)這個(gè)工人為優(yōu)秀員工.
(1)求這個(gè)樣本數(shù)據(jù)的中位數(shù)和眾數(shù);
(2)以這個(gè)樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算體積的祖暅原理:“冪勢(shì)既同,則積不容異!币馑际牵簝蓚(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.已知曲線,直線為曲線在點(diǎn)處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個(gè)幾何體:
① ② ③ ④
圖①是底面直徑和高均為的圓錐;
圖②是將底面直徑和高均為的圓柱挖掉一個(gè)與圓柱同底等高的倒置圓錐得到的幾何體;
圖③是底面邊長(zhǎng)和高均為的正四棱錐;
圖④是將上底面直徑為,下底面直徑為,高為的圓臺(tái)挖掉一個(gè)底面直徑為,高為的倒置圓錐得到的幾何體.
根據(jù)祖暅原理,以上四個(gè)幾何體中與的體積相等的是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在古裝電視劇《知否》中,甲乙兩人進(jìn)行一種投壺比賽,比賽投中得分情況分“有初”“貫耳”“散射”“雙耳”“依竿”五種,其中“有初”算“兩籌”,“貫耳”算“四籌”,“散射”算“五籌”,“雙耳”算“六籌”,“依竿”算“十籌”,三場(chǎng)比賽得籌數(shù)最多者獲勝.假設(shè)甲投中“有初”的概率為,投中“貫耳”的概率為,投中“散射”的概率為,投中“雙耳”的概率為,投中“依竿”的概率為,乙的投擲水平與甲相同,且甲乙投擲相互獨(dú)立.比賽第一場(chǎng),兩人平局;第二場(chǎng),甲投了個(gè)“貫耳”,乙投了個(gè)“雙耳”,則三場(chǎng)比賽結(jié)束時(shí),甲獲勝的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,底面ABCD是邊長(zhǎng)為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.
(1)求證:平面平面BDE;
(2)求二面角B-EF-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其圖象關(guān)于直線對(duì)稱(chēng),為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)( )
A.先向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)保持不變
B.先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)保持不變
C.先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)保持不變
D.先向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)保持不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱的各條棱長(zhǎng)均相等, 為的中點(diǎn), 分別是線段和線段上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足.當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是( )
A. 平面平面 B. 三棱錐的體積為定值
C. 可能為直角三角形 D. 平面與平面所成的銳二面角范圍為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一零點(diǎn),試求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com