【題目】為了研究學(xué)生的數(shù)學(xué)核心素養(yǎng)與抽象能力(指標(biāo)x)、推理能力(指標(biāo)y)、建模能力(指標(biāo)z的相關(guān)性,將它們各自量化為1、2、3三個(gè)等級(jí),再用綜合指標(biāo)w=x+y+x的值評(píng)定學(xué)生的數(shù)學(xué)核心素養(yǎng),若,則數(shù)學(xué)核心素養(yǎng)為一級(jí);若則數(shù)學(xué)核心素養(yǎng)為二級(jí):若,則數(shù)學(xué)核心素養(yǎng)為三級(jí),為了了解某校學(xué)生的數(shù)學(xué)核心素養(yǎng),調(diào)查人員隨機(jī)訪問了某校10名學(xué)生,得到如下數(shù)據(jù):

(1)在這10名學(xué)生中任取兩人,求這兩人的建棋能力指標(biāo)相同條件下綜合指標(biāo)值也相同的概率;

(2)在這10名學(xué)生中任取三人,其中數(shù)學(xué)核心素養(yǎng)等級(jí)足一級(jí)的學(xué)生人數(shù)記為X,求隨機(jī)變量X的分布列及其數(shù)學(xué)期望。

【答案】(1);(2)見解析

【解析】

(1)由表格結(jié)合條件概率公式即可得到結(jié)果;

(2)X的所有可能取值為0,1,2,3,求出相應(yīng)的概率值,帶入期望公式得到結(jié)果.

x

2

3

3

1

2

2

2

2

2

2

y

2

2

3

2

3

3

2

3

1

2

z

3

3

3

2

2

3

2

3

1

2

w

7

8

9

5

7

8

6

8

4

6

(1)由題可知:建模能力一級(jí)的學(xué)生是;建模能力二級(jí)的學(xué)生是;建模能力三級(jí)的學(xué)生是.

記“所取的兩人的建模能力指標(biāo)相同”為事件,記“所取的兩人的綜合指標(biāo)值相同”為事件.

(2)由題可知,數(shù)學(xué)核心素養(yǎng)一級(jí)的學(xué)生為:,非一級(jí)的學(xué)生為余下4人

的所有可能取值為0,1,2,3.

,

,

隨機(jī)變量的分布列為:

0

1

2

3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,,.

(1) 求證:;

(2) 求直線與平面所成角的正弦值;

(3) 線段上是否存在點(diǎn),使平面若存在,求出;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

合計(jì)

男生

5

女生

10

合計(jì)

50

已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6.

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)能否在犯錯(cuò)概率不超過的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說明你的理由.

(參考公式: )

臨界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中在今年的期末考試歷史成績(jī)中隨機(jī)抽取名考生的筆試成績(jī),作出其頻率分布直方圖如圖所示,已知成績(jī)?cè)?/span>中的學(xué)生有1名,若從成績(jī)?cè)?/span>兩組的所有學(xué)生中任取2名進(jìn)行問卷調(diào)查,則2名學(xué)生的成績(jī)都在中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,命題方程表示焦點(diǎn)在軸上的橢圓,命題方程表示雙曲線.

(1)若命題是真命題,求實(shí)數(shù)的范圍;

(2)若命題“”為真命題,“”是假命題,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎(jiǎng),在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四件參賽作品的獲獎(jiǎng)情況預(yù)測(cè)如下.

甲說:“、同時(shí)獲獎(jiǎng).”

乙說:“不可能同時(shí)獲獎(jiǎng).”

丙說:“獲獎(jiǎng).”

丁說:“、至少一件獲獎(jiǎng)”

如果以上四位同學(xué)中有且只有兩位同學(xué)的預(yù)測(cè)是正確的,則獲獎(jiǎng)的作品是( )

A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果對(duì)定義在R上的函數(shù),對(duì)任意兩個(gè)不相等的實(shí)數(shù)都有

以上函數(shù)是的所有序號(hào)為_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】蚌埠市某中學(xué)高三年級(jí)從甲(文)、乙(理)兩個(gè)科組各選出名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽?jī)的莖葉圖如圖所示,其中甲組學(xué)生的平均分是,乙組學(xué)生成績(jī)的中位數(shù)是

1)求的值;

2)計(jì)算甲組位學(xué)生成績(jī)的方差;

3)從成績(jī)?cè)?/span>分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求甲組至少有一名學(xué)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案