【題目】已知某運動員每次投籃命中的概率都是40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有一次命中的概率:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,56 ,7 ,8 ,9 ,0表示不命中;再以每三個隨機數(shù)作為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):907, 966, 191, 925, 271, 932, 812,458, 569, 683, 431, 257, 393, 027, 556, 488, 730, 113, 537, 989.據(jù)此估計,該運動員三次投籃恰有一次命中的概率為 ( )

A. 025 B. 02 C. 035 D. 04

【答案】D

【解析】

試題由題意知模擬三次投籃的結(jié)果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù), 在20組隨機數(shù)中表示三次投籃恰有兩次命中的有:191、271932、812、393.共5組隨機數(shù), 所求概率為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長,“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語言描述:在羨除中,,,,,兩條平行線間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】質(zhì)檢部門從某超市銷售的甲、乙兩種食用油中分別隨機抽取100桶檢測某項質(zhì)量指標,由檢測結(jié)果得到如圖的頻率分布直方圖:

(I)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標的方差分別為,試比較的大。ㄖ灰髮懗龃鸢福

(Ⅱ)佑計在甲、乙兩種食用油中各隨機抽取1桶,恰有一個桶的質(zhì)量指標大于20,且另—個桶的質(zhì)量指標不大于20的概率;

(Ⅲ)由頻率分布直方圖可以認為,乙種食用油的質(zhì)量指標值服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差,設(shè)表示從乙種食用油中隨機抽取10桶,其質(zhì)量指標值位于(14.55, 38.45)的桶數(shù),求的數(shù)學期望.

注:①同一組數(shù)據(jù)用該區(qū)間的中點值作代表,計算得

②若,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】7本不同的書:

1)全部分給6個人,每人至少一本,有多少種不同的分法?

2)全部分給5個人,每人至少一本,有多少種不同的分法?.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=,下列結(jié)論中錯誤的是

A. , f()=0

B. 函數(shù)y=f(x)的圖像是中心對稱圖形

C. f(x)的極小值點,則f(x)在區(qū)間(-∞,)單調(diào)遞減

D. fx)的極值點,則()=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知如圖, 平面,四邊形為等腰梯形, , .

(1)求證:平面平面

(2)已知中點,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在拋物線上,則當點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足2an=2+Sn

1)求證:數(shù)列{an}是等比數(shù)列;

2)設(shè)bn=log2a2n+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點Pt,t1),tR,點E是圓上的動點,點F是圓上的動點,則|PF||PE|的最大值為______

查看答案和解析>>

同步練習冊答案