已知函數(shù)的圖像在點處的切線方程為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求函數(shù)在區(qū)間上的最大值;
(Ⅲ)若曲線上存在兩點使得是以坐標原點為直角頂點的直角三角形,且斜邊的中點在軸上,求實數(shù)的取值范圍.

(Ⅰ);(Ⅱ)當在[-1,2]上的最大值為2,
在[-1,2]上的最大值為;(Ⅲ).

解析試題分析:(Ⅰ)由題意先對時的函數(shù)進行求導,易得,解得;(Ⅱ)因為函數(shù)為分段函數(shù),要求在區(qū)間上的最大值,需分別求區(qū)間上的最大值,當時,應對函數(shù)進行求導,求函數(shù)的單調性,從而求區(qū)間上的最大值;當時,應對函數(shù)兩種情況討論,可得結論;(Ⅲ)根據(jù)條件可知的橫坐標互為相反數(shù),不妨設,其中,若,則,由是直角,得,即,方程無解;若,則由于中的中點在軸上,且,所以點不可能在軸上,即同理有,,得的范圍是.
試題解析:(I)當,
因為函數(shù)圖象在點處的切線方程為
所以切點坐標為解得.       4分
(II)由(I)得,當,令
可得上單調遞減,在上單調遞增,所以在的最大值為,當時,,
時,恒成立此時在[-1,2]上的最大值為;
在[1,2]上單調遞增,且,
,
所以當在[-1,2]上的最大值為,
在[-1,2]上的最大值為,
綜上可知,當在[-1,2]上的最大值為2,
時當

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知冪函數(shù)(m∈N)的圖象關于y軸對稱,且在(0,+∞)上是減函數(shù),求滿足的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

計算:
(1);
(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中實數(shù)
(1)若,求函數(shù)的單調區(qū)間;
(2)當函數(shù)的圖象只有一個公共點且存在最小值時,記的最小值為,求的值域;
(3)若在區(qū)間內(nèi)均為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


(1)求f(x)的單調區(qū)間;
(2)求f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),,其中實數(shù)
(1)若,求函數(shù)的單調區(qū)間;
(2)當函數(shù)的圖象只有一個公共點且存在最小值時,記的最小值為,求的值域;
(3)若在區(qū)間內(nèi)均為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的值域;
(2)若時,函數(shù)的最小值為,求的值和函數(shù) 的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)解不等式
(2)對于任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知.
①若函數(shù)f(x)的值域為R,求實數(shù)m的取值范圍;
②若函數(shù)f(x)在區(qū)間(-∞,1-)上是增函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案