【題目】橢圓的離心率是,過(guò)點(diǎn)做斜率為的直線,橢圓與直線交于兩點(diǎn),當(dāng)直線垂直于軸時(shí)

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)變化時(shí),在軸上是否存在點(diǎn),使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說(shuō)明理由.

【答案】(Ⅰ) ;(Ⅱ)見(jiàn)解析。

【解析】

(Ⅰ)由橢圓的離心率為得到,于是橢圓方程為.有根據(jù)題意得到橢圓過(guò)點(diǎn),將坐標(biāo)代入方程后求得,進(jìn)而可得橢圓的方程.(Ⅱ)假設(shè)存在點(diǎn),使得是以為底的等腰三角形,則點(diǎn)為線段AB的垂直平分線與x軸的交點(diǎn).由題意得設(shè)出直線的方程,借助二次方程的知識(shí)求得線段的中點(diǎn)的坐標(biāo),進(jìn)而得到線段的垂直平分線的方程,在求出點(diǎn)的坐標(biāo)后根據(jù)基本不等式可求出的取值范圍.

(Ⅰ)因?yàn)闄E圓的離心率為,

所以,整理得

故橢圓的方程為

由已知得橢圓過(guò)點(diǎn),

所以,解得,

所以橢圓的方程為

(Ⅱ)由題意得直線的方程為

消去整理得,

其中

設(shè),的中點(diǎn)

,

所以

∴點(diǎn)C的坐標(biāo)為

假設(shè)在軸存在點(diǎn),使得是以為底的等腰三角形,

則點(diǎn)為線段的垂直平分線與x軸的交點(diǎn).

①當(dāng)時(shí),則過(guò)點(diǎn)且與垂直的直線方程,

,則得

,則,

,則,

②當(dāng)時(shí),則有

綜上可得

所以存在點(diǎn)滿足條件,且m的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x,y,z為非零實(shí)數(shù),滿足xy+yz+zx=1,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),拋物線的焦點(diǎn)為,射線與拋物線相交于點(diǎn),與其準(zhǔn)線相交于點(diǎn),則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,,,,分別為線段,上的點(diǎn),且.

(1)證明:;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的左焦點(diǎn)為且離心率為,為橢圓上任意一點(diǎn),的取值范圍為,.

(1)求橢圓的方程;

(2)如圖,設(shè)圓是圓心在橢圓上且半徑為的動(dòng)圓,過(guò)原點(diǎn)作圓的兩條切線,分別交橢圓于兩點(diǎn).是否存在使得直線與直線的斜率之積為定值?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)表示k個(gè)數(shù)字均為1的十進(jìn)制數(shù)(=1,=111),定義。

(1)對(duì)于任意正整數(shù)m、n,令,寫出一個(gè)關(guān)于f(m,n)的遞推關(guān)系式,并證明之;

(2)證明:對(duì)于任意正整數(shù)m、n,{m+n}!均可以被{m}!.{n}!整除。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解高二年級(jí)學(xué)生某次數(shù)學(xué)考試成績(jī)的分布情況,從該年級(jí)的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績(jī),發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績(jī)按照,,,分組后,得到的頻率分布直方圖如圖所示,則下列說(shuō)法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計(jì)為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)的坐標(biāo)分別為,.三角形的兩條邊所在直線的斜率之積是.

1)求點(diǎn)的軌跡方程;

2)設(shè)直線方程為,直線方程為,直線,點(diǎn),關(guān)于軸對(duì)稱,直線軸相交于點(diǎn).的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且曲線在點(diǎn)處的切線與直線垂直.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:時(shí),.

查看答案和解析>>

同步練習(xí)冊(cè)答案