由原點(diǎn)O向三次曲線y=x3-3ax2(a≠0)引切線,切點(diǎn)為P1(x1,y1)(O,P1兩點(diǎn)不重合),再由P1引此曲線的切線,切于點(diǎn)P2(x2,y2)(P1,P2不重合),如此繼續(xù)下去,得到點(diǎn)列:{Pn(xn,yn)}
(1)求x1;
(2)求xn與xn+1滿足的關(guān)系式;
(3)若a>0,試判斷xn與a的大小關(guān)系,并說明理由
分析:(1)由y=x3-3ax2(a≠0)求導(dǎo)得直線的斜率,設(shè)出過曲線上的點(diǎn)P1(x1,y1)的切線L1的方程,再由切線L1過原點(diǎn)O求解;
(2)不妨設(shè)過曲線上的點(diǎn)Pn+1(xn+1,yn+1)處的切線Ln+1方程為y-(xn+13-3axn+12)=(3xn+12-6axn+1)(x-xn+1),由Ln+1過點(diǎn)Pn(xn,yn)代入方程,化簡可得其關(guān)系;
(3)由(2)的結(jié)論有xn+1=-
1
2
xn+
3
2
a,通過配方轉(zhuǎn)化為xn+1-a=-
1
2
(xn-a)有數(shù)列{xn-a}是首項(xiàng)為x1-a=
a
2
,公比為-
1
2
的等比數(shù)列求得xn=[1-(-
1
2
)
n
]a再比較.
解答:解:(1)由y=x3-3ax2(a≠0)得y′=3x2-6ax
過曲線上的點(diǎn)P1(x1,y1)的切線L1的方程為
y-(x13-3ax12)=(3ax12-6ax1)(x-x1
又∵切線L1過原點(diǎn)O,-(x13-3ax12)=(3ax12-6ax1)(x-x1)化得x1=
3a
2


(2)過曲線上的點(diǎn)Pn+1(xn+1,yn+1)處的切線Ln+1方程為
y-(xn+13-3axn+12)=(3xn+12-6axn+1)(x-xn+1),
Ln+1過點(diǎn)Pn(xn,yn)得xn3-3axn2-xn+13+3axn+12=(3xn+12-6axn+1)(xn-xn+1),
由于xn≠xn+1,分解因式并約簡,得:xn2+xnxn+1+xn+12-3a(xn+xn+1)=3xn+12-6axn+1
∴xn2+xnxn+1-2xn+12-3a(xn-xn+1)=0
(xn-xn+1)(xn+2xn+1)-3a(xn+xn+1)=0
∴xn+2xn+1=3a

(3)由(2)得:xn+1=-
1
2
xn+
3
2
a,
∴xn+1-a=-
1
2
(xn-a)
故有數(shù)列{xn-a}是首項(xiàng)為x1-a=
a
2
,公比為-
1
2
的等比數(shù)列
∴xn-a=
a
2
(-
1
2
)
n-1

∴xn=[1-(-
1
2
)
n
]a
∵a>0,
∴當(dāng)n為偶數(shù)時(shí),xn<a;當(dāng)n為奇數(shù)時(shí)xn>a
點(diǎn)評:本題主要考查導(dǎo)數(shù)的幾何意義通過點(diǎn)在線上,構(gòu)造數(shù)列模型考查數(shù)列變形轉(zhuǎn)化及通項(xiàng)間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由原點(diǎn)O向三次曲線y=x3-3ax2+bx(a≠0)引切線,切于不同于點(diǎn)O的點(diǎn)P1(x1,y1),再由P1引此曲線的切線,切于不同于P1的點(diǎn)P2(x2,y2),如此繼續(xù)地作下去,…,得到點(diǎn)列{Pn(xn,yn)},試回答下列問題:
(1)求x1
(2)求xn與xn+1的關(guān)系;
(3)若a>0,求證:當(dāng)n為正偶數(shù)時(shí),xn<a;當(dāng)n為正奇數(shù)時(shí),xn>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

由原點(diǎn)O向三次曲線y=x3-3ax2(a≠0)引切線,切點(diǎn)為P1(x1,y1)(O,P1兩點(diǎn)不重合),再由P1引此曲線的切線,切于點(diǎn)P2(x2,y2)(P1,P2不重合),如此繼續(xù)下去,得到點(diǎn)列:{Pn(xn,yn)}
(1)求x1;
(2)求xn與xn+1滿足的關(guān)系式;
(3)若a>0,試判斷xn與a的大小關(guān)系,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由原點(diǎn)O向三次曲線y=x3-3x2引切線,切于異于原點(diǎn)的點(diǎn)P1(x1,y1),再由P1引此曲線的切線,切于異于點(diǎn)P1的點(diǎn)P2(x2,y2),如此繼續(xù)下去,得到點(diǎn)列{Pn(xn,yn)}.

(1)求x1;

(2)求xnxn+1滿足的關(guān)系式;

(3)求數(shù)列{xn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省吉安市白鷺洲中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

由原點(diǎn)O向三次曲線y=x3-3ax2+bx (a≠0)引切線,切于不同于點(diǎn)O的點(diǎn)P1(x1,y1),再由P1引此曲線的切線,切于不同于P1的點(diǎn)P2(x2,y2),如此繼續(xù)地作下去,…,得到點(diǎn)列{ P n(x n,y n)},試回答下列問題:
(1)求x1;
(2)求xn與xn+1的關(guān)系;
(3)若a>0,求證:當(dāng)n為正偶數(shù)時(shí),xn<a;當(dāng)n為正奇數(shù)時(shí),xn>a.

查看答案和解析>>

同步練習(xí)冊答案