【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足2acosC=2b﹣c.
(1)求sinA的值;
(2)若a=1,求△ABC的周長l的取值范圍.
【答案】
(1)解:由題意可得2acosC=2b﹣c,
結(jié)合正弦定理可得 2sinAcosC=2sinB﹣sinC,
∴2sinAcosC=2sin(A+C)﹣sinC,
∴2sinAcosC=2sinAcosC+2cosAsinC﹣sinC,
∴2cosAsinC=sinC,即cosA= ,
∴sinA=
(2)解:由(1)可得a=1,sinA= ,A= ,
∴b= = sinB,同理可得c= sinC,
∴△ABC的周長l=1+ sinB+ sinC
=1+ sinB+ sin( ﹣B)
=1+ (sinB+ cosB+ sinB)
=1+ ( sinB+ cosB)
=1+2sin(B+ ),
∴B∈(0, ),∴B+ ∈( , ),
∴sin(B+ )∈( ,1],
∴2sin(B+ )∈(1,2],
∴1+2sin(B+ )∈(2,3],
∴△ABC的周長l的取值范圍為(2,3]
【解析】(1)由題意和正弦定理以及和差角的三角函數(shù)公式可得cosA= ,進(jìn)而可得sinA= ;(2)由(1)可得a=1,sinA= ,A= ,結(jié)合正弦定理可得l=1+ sinB+ sinC=1+2sin(B+ ),由B∈(0, )和三角函數(shù)的值域可得.
【考點精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:),還要掌握余弦定理的定義(余弦定理:;;)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有數(shù)列1,2,2,3,3,3,4,4,4,4,….
(1)問10是該數(shù)列的第幾項到第幾項?
(2)求第100項.
(3)求前100項的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域為BCDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路(不考慮寬度).∠BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=3km.
(1)求道路BE的長度;
(2)求道路AB,AE長度之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近日,某公司對其生產(chǎn)的一款產(chǎn)品進(jìn)行促銷活動,經(jīng)測算該產(chǎn)品的銷售量P(單位:萬件)與促銷費用x(單位:萬元)滿足函數(shù)關(guān)系:p=3﹣ (其中0≤x≤a,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品件數(shù)為P(單位:萬件)時,還需投入成本10+2P(單位:萬元)(不含促銷費用),產(chǎn)品的銷售價格定為(4+ )元/件,假定生產(chǎn)量與銷售量相等.
(1)將該產(chǎn)品的利潤y(單位:萬元)表示為促銷費用x(單位:萬元)的函數(shù);
(2)促銷費用x(單位:萬元)是多少時,該產(chǎn)品的利潤y(單位:萬元)取最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,若互不相等的實數(shù)x1 , x2 , x3滿足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍是( )
A.( ]
B.( )
C.( ]
D.( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),若f(x)<2f′(x)恒成立,且f(ln4)=2,則不等式f(x)>e 的解集是( )
A.(ln2,+∞)
B.(2ln2,+∞)
C.(﹣∞,ln2)
D.(﹣∞,2ln2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π])的部分圖象如圖所示,若A( , ),B( , ).則下列說法錯誤的是( )
A.φ=
B.函數(shù)f(x)的一條對稱軸為x=
C.為了得到函數(shù)y=f(x)的圖象,只需將函數(shù)y=2sin2x的圖象向右平移 個單位
D.函數(shù)f(x)的一個單調(diào)減區(qū)間為[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓C: 的左、右焦點,點 在橢圓上,且 軸,的周長為6.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)E,F是橢圓C上異于點的兩個動點,如果直線PE與直線PF的傾斜角互補(bǔ),證明:直線EF的斜率為定值,并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com