【題目】某化工企業(yè)2018年年底投入100萬元,購入一套污水處理設(shè)備。該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬元,此外,每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(單位:萬元)
(1)用表示;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論函數(shù)極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),其中且,是否存在整數(shù)使得不等式
恒成立?若存在,求整數(shù)的值;若不存在,請(qǐng)說明理由.(參考數(shù)據(jù): )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用五種不同顏色(顏色可以不全用完)給三棱柱的六個(gè)頂點(diǎn)涂色,要求每個(gè)點(diǎn)涂一種顏色,且每條棱的兩個(gè)端點(diǎn)涂不同顏色,則不同的涂色種數(shù)有( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,疫苗在上市前必須經(jīng)過嚴(yán)格的檢測(cè),并通過臨床實(shí)驗(yàn)獲得相關(guān)數(shù)據(jù),以保證疫苗使用的安全和有效.某生物制品硏究所將某一型號(hào)疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射疫苗 | 40 | p | x |
注射疫苗 | 60 | q | y |
總計(jì) | 100 | 100 | 200 |
現(xiàn)從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.
(1)求列聯(lián)表中的數(shù)據(jù)p,q,,的值;
(2)能否有把握認(rèn)為注射此種疫苗有效?
(3)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只進(jìn)行病例分析,然后從這五只小白鼠中隨機(jī)抽取3只對(duì)注射疫苗情況進(jìn)行核實(shí),求至少抽到2只為未注射疫苗的小白鼠的概率. 附:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(1) 求出,,并猜測(cè)的表達(dá)式;
(2) 求證:+++…+.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), , .
(1)若,且存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn), ,過線段的中點(diǎn)作軸的垂線分別交, 于點(diǎn), ,證明: 在點(diǎn)處的切線與在點(diǎn)處的切線不平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年被稱為“新高考元年”,隨著上海、浙江兩地順利實(shí)施“語數(shù)外+3”新高考方案,新一輪的高考改革還將繼續(xù)在全國推進(jìn)。遼寧地區(qū)也將于2020年開啟新高考模式,今年秋季入學(xué) 的高一新生將面臨從物理、化學(xué)、生物、政治、歷史、地理等6科中任選三科(共20種選法)作為 自己將來高考“語數(shù)外+3 ”新高考方案中的“3”。某地區(qū)為了順利迎接新高考改革,在某學(xué)校理科班的200名學(xué)生中進(jìn)行了“學(xué)生模擬選科數(shù)據(jù)”調(diào)查,每個(gè)學(xué)生只能從表格中的20種課程 組合選擇一種學(xué)習(xí)。模擬選課數(shù)據(jù)統(tǒng)計(jì)如下表:
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
組合學(xué)科 | 物化生 | 物化政 | 物化歷 | 物化地 | 物生政 | 物生歷 | 物生地 |
人數(shù) | 20人 | 5人 | 10人 | 10人 | 10人 | 15人 | 10人 |
序號(hào) | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
組合學(xué)科 | 物政歷 | 物政地 | 物歷地 | 化生政 | 化生歷 | 化生地 | 化政歷 |
人數(shù) | 5人 | 0人 | 5人 | ... | 40人 | ... | ... |
序號(hào) | 15 | 16 | 17 | 18 | 19 | 20 | |
組合學(xué)科 | 化政地 | 化歷地 | 生政歷 | 生政地 | 生歷地 | 政歷地 | 總計(jì) |
人數(shù) | ... | ... | ... | ... | ... | ... | 200人 |
為了解學(xué)生成績(jī)與學(xué)生模擬選課情之間的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進(jìn)行分析.
(1)樣本中選擇組合12號(hào)“化生歷”的有多少人?樣本中選擇學(xué)習(xí)物理的有多少人?
(2)從樣本選擇學(xué)習(xí)地理且學(xué)習(xí)物理的學(xué)生中隨機(jī)抽取3人,求這3人中至少有1人還要學(xué)習(xí)生物的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于回歸分析的說法中錯(cuò)誤的有( )個(gè)
(1). 殘差圖中殘差點(diǎn)所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報(bào)精確度越高.
(2). 回歸直線一定過樣本中心。
(3). 兩個(gè)模型中殘差平方和越小的模型擬合的效果越好。
(4) .甲、乙兩個(gè)模型的分別約為0.88和0.80,則模型乙的擬合效果更好.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com