【題目】已知復(fù)數(shù)z=(m2+5m﹣6)+(m2﹣2m﹣15)i,(i為虛數(shù)單位,m∈R)
(1)若復(fù)數(shù)Z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第一、三象限的角平分線上,求實(shí)數(shù)M的值;
(2)當(dāng)實(shí)數(shù)m=﹣1時(shí),求 的值.

【答案】
(1)解:因?yàn)閺?fù)數(shù)z所對(duì)應(yīng)的點(diǎn)在一、三象限的角平分線上,

所以m2+5m+6=m2﹣2m﹣15,

解得m=﹣3


(2)解:當(dāng)實(shí)數(shù)m=﹣1時(shí),z=(1﹣5+6)+(1+2﹣15)i=2﹣12i.

,

所以 的值為


【解析】(1)因?yàn)閺?fù)數(shù)z所對(duì)應(yīng)的點(diǎn)在一、三象限的角平分線上,可得m2+5m+6=m2﹣2m﹣15,解得m.(2)當(dāng)實(shí)數(shù)m=﹣1時(shí),z=(1﹣5+6)+(1+2﹣15)i=2﹣12i.再利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題 :直線 與拋物線 )沒有交點(diǎn);已知命題 :方程 表示雙曲線;若 為真, 為假,試求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)判斷函數(shù)的奇偶性,并予以證明;

2當(dāng)時(shí)求使的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是圓的直徑, 垂直圓所在的平面, 是圓上的點(diǎn).

(1)求證: 平面;

(2)設(shè)的中點(diǎn), 的重心,求證: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的邊上的高所在直線方程分別為, 頂點(diǎn),邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)及圓.

(1)設(shè)過(guò)點(diǎn)的直線與圓交于兩點(diǎn),當(dāng)時(shí),求以線段為直徑的圓的方程;

(2)設(shè)直線與圓交于兩點(diǎn),是否存在實(shí)數(shù)使得過(guò)點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點(diǎn),求證:

(Ⅰ)底面;

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)物園要建造一面靠墻的兩間相同的矩形熊貓居室,如果可供建造圍墻的材料總長(zhǎng)是

用寬(單位)表示所建造的每間熊貓居室的面積(單位);

怎么設(shè)計(jì)才能使所建造的每間熊貓居室面積最大?并求出每間熊貓居室的最大面積?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙是邊長(zhǎng)為的兩塊正方形鋼板,現(xiàn)要將甲裁剪焊接成一個(gè)正四棱柱,將乙裁剪焊接成一個(gè)正四棱錐,使它們的全面積都等于一個(gè)正方形的面積(不計(jì)焊接縫的面積).

(1)將你的裁剪方法用虛線標(biāo)示在圖中,并作簡(jiǎn)要說(shuō)明;

(2)試比較你所制作的正四棱柱與正四棱錐體積的大小,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案